Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Рис. 0
Рис. 0
Рис. 1
Рис. 1

Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV. Повороту луча OV на один и тот же угол соответствует одно и то же приращение ρ. Свойства этой спирали описаны Архимедом в его сочинении «О спиралях[en]».

Энциклопедичный YouTube

  • 1/4
    Просмотров:
    7 053
    1 831
    1 373
    7 030
  • ✪ Архимедова Спираль КОМПАС 3D
  • ✪ Вечная рождающая спираль
  • ✪ Спираль Архимеда
  • ✪ Как создать спираль и резьбу в КОМПАС-3D

Субтитры

Содержание

Описание

Уравнение Архимедовой спирали в полярной системе координат записывается так:

(1)  

где k — смещение точки M по лучу r, при повороте на угол равный одному радиану.

Повороту прямой на соответствует смещение a = |BM| = |MA| = . Число a — называется шагом спирали. Уравнение Архимедовой спирали можно переписать так:

При вращении луча против часовой стрелки получается правая спираль (синяя линия) (см. Рис. 2), при вращении по часовой стрелке — левая спираль (зелёная линия).

Рис. 2
Рис. 2

Обе ветви спирали (правая и левая) описываются одним уравнением (1). Положительным значениям соответствует правая спираль, отрицательным — левая спираль. Если точка M будет двигаться по прямой UV из отрицательных значений через центр вращения O и далее в положительные значения, вдоль прямой UV, то точка M опишет обе ветви спирали.

Луч OV, проведённый из начальной точки O, пересекает спираль бесконечное число раз — точки B, M, A и так далее. Расстояния между точками B и M, M и A равны шагу спирали . При раскручивании спирали расстояние от точки O до точки M стремится к бесконечности, при этом шаг спирали остаётся постоянным (конечным), то есть чем дальше от центра, тем ближе витки спирали по форме приближаются к окружности.

Площадь сектора

Площадь сектора OCM:

,

  

где , , .

При , , , формула (2) даёт площадь фигуры, ограниченной первым витком спирали и отрезком CO:

,

где  — площадь круга, радиус которого равен шагу спирали — .

Все эти свойства и уравнения были открыты Архимедом.

Вычисление длины дуги Архимедовой спирали

Бесконечно малый отрезок дуги равен (см. Рис.3):

Рис. 3. Вычисление длины дуги Архимедовой спирали
Рис. 3. Вычисление длины дуги Архимедовой спирали
,

где  — приращение радиуса , при приращении угла на . Для бесконечно малого приращения угла справедливо:

.

Поэтому:

так как и

или

.

Длина дуги равна интегралу от по в пределах от до :

.[1]

Трёхмерное обобщение

Трёхмерным обобщением архимедовой спирали можно считать проекцию конической спирали на плоскость, перпендикулярную оси конуса.

Архимедова спираль (черная), как проекция конической спирали на плоскость, перпендикулярную оси конуса, цилиндрическая спираль (зеленая) и коническая спираль (красная)
Архимедова спираль (черная), как проекция конической спирали на плоскость, перпендикулярную оси конуса, цилиндрическая спираль (зеленая) и коническая спираль (красная)

Примечания

  1. Weisstein, Eric W. Archimedes' Spiral (англ.) на сайте Wolfram MathWorld.

Ссылки

Эта страница в последний раз была отредактирована 8 сентября 2019 в 15:47.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).