Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Построение треугольника Рёло

Треуго́льник Рёло́[* 1] представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне[1][2]. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло.

Треугольник Рёло является простейшей после круга фигурой постоянной ширины[1]. То есть если к треугольнику Рёло провести пару параллельных опорных прямых[* 2], то расстояние между ними не будет зависеть от выбранного направления[3]. Это расстояние называется шириной треугольника Рёло.

Среди прочих фигур постоянной ширины треугольник Рёло выделяется рядом экстремальных свойств: наименьшей площадью[1], наименьшим возможным углом при вершине[4], наименьшей симметричностью относительно центра[5]. Треугольник получил распространение в технике — на его основе были созданы кулачковые и грейферные механизмы, роторно-поршневой двигатель Ванкеля и даже дрели, позволяющие сверлить (фрезеровать) квадратные отверстия[6].

Название фигуры происходит от фамилии немецкого механика Франца Рёло. Он, вероятно, был первым, кто исследовал свойства этого так называемого криволинейного треугольника; также он использовал его в своих механизмах[7].

История

Леонардо да Винчи, манускрипт A, фрагмент листа 15v

Рёло не является первооткрывателем этой фигуры, хотя он и подробно исследовал её. В частности, он рассматривал вопрос о том, сколько контактов (в кинематических парах) необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась[8].

Некоторые математики считают, что первым продемонстрировал идею треугольника из равных дуг окружности Леонард Эйлер в XVIII веке[9]. Тем не менее подобная фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Треугольник Рёло есть в его манускриптах A и B, хранящихся в Институте Франции[10], а также в Мадридском кодексе[9].

Mappamundi. Леонардо да Винчи, примерно 1514 год

Примерно в 1514 году Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами (угол между плоскостями этих меридианов равен 90°) на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло, собранными по четыре вокруг полюсов[11].

Ещё раньше, в XIII веке, создатели церкви Богоматери в Брюгге использовали треугольник Рёло в качестве формы для некоторых окон[9].

Свойства

Треугольник Рёло является плоской выпуклой геометрической фигурой[12].

Основные геометрические характеристики

Если ширина треугольника Рёло равна , то его площадь равна[13]

периметр

радиус вписанной окружности

а радиус описанной окружности

.

Симметрия

Треугольник Рёло обладает осевой симметрией. Он имеет три оси симметрии второго порядка, каждая из которых проходит через вершину треугольника и середину противоположной дуги, а также одну ось симметрии третьего порядка, перпендикулярную плоскости треугольника и проходящую через его центр[* 3]. Таким образом, группа симметрий треугольника Рёло состоит из шести отображений (включая тождественное) и совпадает с группой симметрий правильного треугольника.

Построение циркулем

Треугольник Рёло можно построить с помощью одного только циркуля, не прибегая к линейке. Это построение сводится к последовательному проведению трёх равных окружностей. Центр первой выбирается произвольно, центром второй может быть любая точка первой окружности, а центром третьей — любая из двух точек пересечения первых двух окружностей.

Свойства, общие для всех фигур постоянной ширины

Поскольку треугольник Рёло является фигурой постоянной ширины, он обладает всеми общими свойствами фигур этого класса. В частности,

  • с каждой из своих опорных прямых треугольник Рёло имеет лишь по одной общей точке[14];
  • расстояние между двумя любыми точками треугольника Рёло ширины не может превышать [15];
  • отрезок, соединяющий точки касания двух параллельных опорных прямых к треугольнику Рёло, перпендикулярен к этим опорным прямым[16];
  • через любую точку границы треугольника Рёло проходит по крайней мере одна опорная прямая[17];
  • через каждую точку границы треугольника Рёло проходит объемлющая его окружность радиуса [* 4], причём опорная прямая, проведённая к треугольнику Рёло через точку , является касательной к этой окружности[18];
  • радиус окружности, имеющей не меньше трёх общих точек с границей треугольника Рёло ширины , не превышает [19];
  • по теореме Ханфрида Ленца[de] о множествах постоянной ширины треугольник Рёло нельзя разделить на две фигуры, диаметр которых был бы меньше ширины самого треугольника[20][21];
  • треугольник Рёло, как и любую другую фигуру постоянной ширины, можно вписать в квадрат[22], а также в правильный шестиугольник[23];
  • по теореме Барбье формула периметра треугольника Рёло справедлива для всех фигур постоянной ширины[24][25][26].

Экстремальные свойства

Наименьшая площадь

Среди всех фигур постоянной ширины у треугольника Рёло наименьшая площадь[1]. Это утверждение носит название теоремы Бляшке — Лебега[27][28] (по фамилиям немецкого геометра Вильгельма Бляшке, опубликовавшего теорему в 1915 году[29], и французского математика Анри Лебега, который сформулировал её в 1914 году[30]). В разное время варианты её доказательства предлагали Мацусабуро Фудзивара (1927 и 1931 год)[31][32], Антон Майер (1935 год)[33], Гарольд Эгглстон (1952 год)[34], Абрам Безикович (1963 год)[35], Дональд Чакериан (1966 год)[36], Эванс Харрелл (2002 год)[37] и другие математики[5].

Чтобы найти площадь треугольника Рёло, можно сложить площадь внутреннего равностороннего треугольника

и площадь трёх оставшихся одинаковых круговых сегментов, опирающихся на угол в 60°

то есть

[38]

Фигура, обладающая противоположным экстремальным свойством — круг. Среди всех фигур данной постоянной ширины его площадь

максимальна[39][* 5]. Площадь соответствующего треугольника Рёло меньше на ≈10,27 %. В этих пределах лежат площади всех остальных фигур данной постоянной ширины.

Наименьший угол

Через каждую вершину треугольника Рёло, в отличие от остальных его граничных точек, проходит не одна опорная прямая, а бесконечное множество опорных прямых. Пересекаясь в вершине, они образуют «пучок». Угол между крайними прямыми этого «пучка» называется углом при вершине. Для фигур постоянной ширины угол при вершинах не может быть меньше 120°. Единственная фигура постоянной ширины, имеющая углы, равные в точности 120° — это треугольник Рёло[4].

Наименьшая центральная симметрия

Треугольник Рёло (бежевый) и его образ при центральной симметрии относительно своего центра (заштрихован). Наибольшая центрально-симметричная фигура, в нём содержащаяся (криволинейный шестиугольник), и наименьшая центрально-симметричная выпуклая, его содержащая (правильный шестиугольник) выделены жирной линией

Из всех фигур постоянной ширины треугольник Рёло обладает центральной симметрией в наименьшей степени[5][40][41][42][43]. Существует несколько различных способов дать определение степени симметричности фигуры. Один из них — это мера Ковнера — Безиковича. В общем случае для выпуклой фигуры она равна

где  — площадь фигуры,  — содержащаяся в центрально-симметричная выпуклая фигура максимальной площади. Для треугольника Рёло такой фигурой является шестиугольник с искривлёнными сторонами, представляющий собой пересечение этого треугольника Рёло со своим образом при центральной симметрии относительно своего центра[* 3]. Мера Ковнера — Безиковича для треугольника Рёло равна

[5][40]

Другой способ — это мера Эстерманна

где  — содержащая центрально-симметричная фигура минимальной площади. Для треугольника Рёло  — это правильный шестиугольник, поэтому мера Эстерманна равна

[5][36]

Для центрально-симметричных фигур меры Ковнера — Безиковича и Эстерманна равны единице. Среди фигур постоянной ширины центральной симметрией обладает только круг[25], который (вместе с треугольником Рёло) и ограничивает область возможных значений их симметричности.

Качение по квадрату

Качение треугольника Рёло по квадрату

Любая фигура постоянной ширины вписана в квадрат со стороной, равной ширине фигуры, причём направление сторон квадрата может быть выбрано произвольно[22][* 6]. Треугольник Рёло — не исключение, он вписан в квадрат и может вращаться в нём, постоянно касаясь всех четырёх сторон[44].

Каждая вершина треугольника при его вращении «проходит» почти весь периметр квадрата, отклоняясь от этой траектории лишь в углах — там вершина описывает дугу эллипса. Центр этого эллипса расположен в противоположном углу квадрата, а его больша́я и малая оси повёрнуты на угол в 45° относительно сторон квадрата и равны

где  — ширина треугольника[45]. Каждый из четырёх эллипсов касается двух смежных сторон квадрата на расстоянии

от угла[38].

Эллипс (выделен красным цветом), очерчивающий один из углов фигуры (её граница выделена чёрным цветом), которую покрывает треугольник Рёло при вращении в квадрате
Эллипс (выделен красным цветом), очерчивающий один из углов фигуры (её граница выделена чёрным цветом), которую покрывает треугольник Рёло при вращении в квадрате
Эллипс (выделен красным цветом), очерчивающий один из углов фигуры (её граница выделена чёрным цветом), которую покрывает треугольник Рёло при вращении в квадрате
Угол покрываемой вращением фигуры. Подписаны точки касания сторон квадрата с эллипсом. Светло-жёлтым показан не затронутый вращением угол квадрата

Центр треугольника Рёло при вращении движется по траектории, составленной из четырёх одинаковых дуг эллипсов. Центры этих эллипсов расположены в вершинах квадрата, а оси повёрнуты на угол в 45° относительно сторон квадрата и равны

[45].

Иногда для механизмов, реализующих на практике такое вращение треугольника, в качестве траектории центра выбирают не склейку из четырёх дуг эллипсов, а близкую к ней окружность[46].

Эллипс (выделен красным цветом), очерчивающий одну четвёртую кривой, по которой движется центр треугольника Рёло при вращении в квадрате
Эллипс (выделен красным цветом), очерчивающий одну четвёртую кривой, по которой движется центр треугольника Рёло при вращении в квадрате
Эллипс (выделен красным цветом), очерчивающий одну четвёртую кривой, по которой движется центр треугольника Рёло при вращении в квадрате
Траектория центра треугольника Рёло при вращении в квадрате. Выделены точки сопряжения четырёх дуг эллипсов. Для сравнения показана окружность (синим цветом), проходящая через эти же четыре точки

Площадь каждого из четырёх не затронутых вращением уголков равна

[47]

и, вычитая их из площади квадрата, можно получить площадь фигуры, которую образует треугольник Рёло при вращении в нём

[38][47][48]

Разница с площадью квадрата составляет ≈1,2 %, поэтому на основе треугольника Рёло создают свёрла, позволяющие получать почти квадратные отверстия[45].

Применение

Сверление квадратных в сечении к оси фрезы отверстий

Фреза с сечением в виде треугольника Рёло и режущими лезвиями, совпадающими с его вершинами, позволяет получать почти квадратные отверстия. Отличие таких отверстий от квадрата в сечении состоит лишь в немного скруглённых углах[50]. Другая особенность подобной фрезы заключается в том, что его ось при вращении не должна оставаться на месте, как это происходит в случае традиционных спиральных свёрл, а описывает в плоскости сечения кривую, состоящую из четырёх дуг эллипсов. Поэтому патрон, в котором зажата фреза, и крепление инструмента не должно препятствовать этому движению[45].

Впервые реализовать подобную конструкцию крепления инструмента удалось Гарри Уаттсу, английскому инженеру, работавшему в США. Для этого он использовал направляющую пластину с отверстием в виде квадрата, в котором могло радиально перемещаться сверло, зажатое в «плавающем патроне»[50]. Патенты на патрон[51] и сверло[52] были получены Уаттсом в 1917 году. Продажу новых дрелей осуществляла фирма Watts Brothers Tool Works[en][53][54]. Ещё один патент США на похожее изобретение был выдан в 1978 году[55].

Двигатель Ванкеля

Схема работы двигателя Ванкеля

Другой пример использования можно найти в двигателе Ванкеля: ротор этого двигателя выполнен в виде треугольника Рёло[6]. Он вращается внутри камеры, поверхность которой выполнена по эпитрохоиде[56]. Вал ротора жёстко соединён с зубчатым колесом, которое сцеплено с неподвижной шестернёй. Такой трёхгранный ротор обкатывается вокруг шестерни, всё время касаясь вершинами внутренних стенок двигателя и образуя три области переменного объёма, каждая из которых по очереди является камерой сгорания[6]. Благодаря этому двигатель выполняет три полных рабочих цикла за один оборот.

Двигатель Ванкеля позволяет осуществить любой четырёхтактный термодинамический цикл без применения механизма газораспределения. Смесеобразование, зажигание, смазка, охлаждение и пуск в нём принципиально такие же, как у обычных поршневых двигателей внутреннего сгорания[56].

Грейферный механизм

Рамочно-кулачковый грейферный механизм кинопроектора «Луч-2»

Ещё одно применение треугольника Рёло в механике — это грейферный механизм, осуществляющий покадровое перемещение плёнки в кинопроекторах. Грейфер проектора «Луч-2», например, основан на треугольнике Рёло, который вписан в рамку-квадрат, закреплённую на двойном параллелограмме. Вращаясь вокруг вала привода, треугольник двигает рамку с расположенным на ней зубом. Зуб входит в перфорацию киноплёнки, протаскивает её на один кадр вниз и выходит обратно, поднимаясь затем к началу цикла. Его траектория тем ближе к квадрату, чем ближе к вершине треугольника закреплён вал (идеально квадратная траектория позволила бы проецировать кадр в течение ¾ цикла)[6][57][58].

Существует и другая конструкция грейфера, также основанная на треугольнике Рёло. Как и в первом случае, рамка этого грейфера совершает возвратно-поступательное движение, однако её двигает не один, а два кулачка, работа которых синхронизирована с помощью зубчатой передачи[28].

Крышки для люков

В форме треугольника Рёло можно изготавливать крышки для люков — благодаря постоянной ширине они не могут провалиться в люк[59].

В Сан-Франциско, для системы рекуперирования воды[en] корпуса люков имеют форму треугольника Рёло, но их крышки имеют форму равносторонних треугольников.

Кулачковый механизм

Внешние изображения
Кулачковые механизмы на основе треугольника Рёло
Модели L01[60], L02[61] и L06[62] из коллекции механизмов Франца Рёло

Треугольник Рёло использовался в кулачковых механизмах некоторых паровых двигателей начала XIX века. В этих механизмах вращательное движение кривошипа поворачивает треугольник Рёло, прикреплённый к толкателю передаточными рычагами, что заставляет толкатель совершать возвратно-поступательное движение[63]. По терминологии Рёло, это соединение образует «высшую» кинематическую пару, поскольку контакт звеньев происходит по линии, а не по поверхности[64]. В подобных кулачковых механизмах толкатель при достижении крайнего правого или левого положения остаётся некоторое конечное время неподвижен[63][10].

Треугольник Рёло ранее широко применялся в кулачковых механизмах швейных машин зигзагообразной строчки.

В качестве кулачка треугольник Рёло использовали немецкие часовые мастера в механизме наручных часов A. Lange & Söhne «Lange 31»[65].

Каток

Катки с сечением в виде круга и треугольника Рёло. Немецкий технический музей

Для перемещения тяжёлых предметов на небольшие расстояния можно использовать не только колёсные, но и более простые конструкции, например, цилиндрические катки[66]. Для этого груз нужно расположить на плоской подставке, установленной на катках, а затем толкать его. По мере освобождения задних катков их необходимо переносить и класть спереди[67][66]. Такой способ транспортировки человечество использовало до изобретения колеса.

При этом перемещении важно, чтобы груз не двигался вверх и вниз, так как тряска потребует дополнительных усилий от толкающего[67]. Для того, чтобы движение по каткам было прямолинейным, их сечение должно представлять собой фигуру постоянной ширины[67][68]. Чаще всего сечением был круг, ведь катками служили обыкновенные брёвна. Однако сечение в виде треугольника Рёло будет ничуть не хуже[прояснить] и позволит передвигать предметы столь же прямолинейно[6][67].

Несмотря на то, что катки в форме треугольника Рёло позволяют плавно перемещать предметы, такая форма не подходит для изготовления колёс, поскольку треугольник Рёло не имеет фиксированной оси вращения[69].

Плектр

Плектр Джонни Рамона

Треугольник Рёло — распространённая форма плектра (медиатора): тонкой пластинки, предназначенной для игры на струнных щипковых музыкальных инструментах.

В дизайне

Треугольник Рёло используется как элемент логотипов компаний и организаций, например: FINA (Petrofina[en])[70], Bavaria[71], Колорадская горная школа[en][72].

В США система национальных троп и система велосипедных маршрутов[en] оформлены с помощью треугольников Рёло[73].

Форма центральной кнопки смартфона Samsung Corby представляет собой треугольник Рёло, вложенный в серебристое обрамление такой же формы. Центральная кнопка, по мнению экспертов, является главным элементом дизайна лицевой стороны Corby[74][75].

Треугольник Рёло в искусстве

Архитектура

Форма треугольника Рёло используется и в архитектурных целях. Конструкция из двух его дуг образует характерную для готического стиля стрельчатую арку, однако целиком он встречается в готических сооружениях довольно редко[76][77]. Окна в форме треугольника Рёло можно обнаружить в церкви Богоматери в Брюгге[9], а также в шотландской церкви в Аделаиде[77]. Как элемент орнамента он встречается на оконных решётках цистерцианского аббатства в швейцарской коммуне Отрив[fr][76].

Треугольник Рёло используют и в архитектуре, не принадлежащей к готическому стилю. Например, построенная в 2006 году в Кёльне 103-метровая башня под названием «Кёльнский треугольник[de]» в сечении представляет собой именно эту фигуру[78].

Некоторые примеры использования
Окно церкви Богоматери в Брюгге Окно собора Святого Сальватора в Брюгге Окно собора Парижской Богоматери «Кёльнский треугольник[de]»
Окно церкви Святого Михаила в Люксембурге Окно церкви Богоматери в Брюгге Окно собора Святых Михаила и Гудулы в Брюсселе Окно собора Святого Бавона в Генте
См. также категорию «Reuleaux triangles in architecture» на Викискладе

Форма и цвет

Треугольник Рёло в соответствиях И. Иттена

Согласно форкурсу Иоганнеса Иттена, в «идеальной» модели соответствий часть спектра каждого цвета пребывает в таковом — с формой (геометрической фигурой). Зелёный цвет является «производным»: результатом смешения прозрачно-синего и светло-жёлтого (без включения ахроматических), а поскольку в этой модели им соответствуют круг и правильный треугольник, именно фигура, называемая И. Иттеном сферическим треугольником, — треугольник Рёло, и соответствует зелёному.

Литература

В научно-фантастическом рассказе Пола Андерсона «Треугольное колесо»[79] экипаж землян совершил аварийную посадку на планете, население которой не использовало колёса, так как всё круглое находилось под религиозным запретом. В сотнях километров от места посадки предыдущая земная экспедиция оставила склад с запасными частями, но перенести оттуда необходимый для корабля двухтонный атомный генератор без каких-либо механизмов было невозможно. В итоге землянам удалось соблюсти табу и перевезти генератор, используя катки с сечением в виде треугольника Рёло.

Вариации и обобщения

Многоугольник Рёло

Семиугольник Рёло, построенный на неправильном звёздчатом семиугольнике

Лежащую в основе треугольника Рёло идею построения можно обобщить, используя для создания кривой постоянной ширины не равносторонний треугольник, а звёздчатый многоугольник, образованный отрезками прямых равной длины[80]. Если из каждой вершины звёздчатого многоугольника провести дугу окружности, которая соединит две смежные ей вершины, то полученная замкнутая кривая постоянной ширины будет состоять из конечного числа дуг одного и того же радиуса[80]. Такие кривые (а также ограничиваемые ими фигуры) называются многоугольниками Рёло[81][82].

Правильные многоугольники Рёло

Семейство многоугольников Рёло определённой ширины образует всюду плотное подмножество во множестве всех кривых постоянной ширины метрикой Хаусдорфа)[81]. Иными словами, с их помощью можно сколь угодно точно приблизить любую кривую постоянной ширины[83][82].

Среди многоугольников Рёло выделяют класс кривых, построенных на основе правильных звёздчатых многоугольников. Этот класс носит название правильных многоугольников Рёло. Все дуги, из которых составлен подобный многоугольник, имеют не только одинаковый радиус, но и одинаковую длину[84][* 8]. Треугольник Рёло, например, является правильным. Среди всех многоугольников Рёло с фиксированным числом сторон и одинаковой шириной правильные многоугольники ограничивают наибольшую площадь[84][85].

Форма таких многоугольников используется в монетном деле: монеты ряда стран (в частности, 20[86] и 50 пенсов[87] Великобритании) выполнены в виде правильного семиугольника Рёло. Существует изготовленный китайским офицером велосипед, колёса которого имеют форму правильных треугольника и пятиугольника Рёло[88].

Трёхмерные аналоги

Тетраэдр Рёло

Трёхмерным аналогом треугольника Рёло как пересечения трёх кругов является тетраэдр Рёло — пересечение четырёх одинаковых шаров, центры которых расположены в вершинах правильного тетраэдра, а радиусы равны стороне этого тетраэдра. Однако тетраэдр Рёло не является телом постоянной ширины: расстояние между серединами противоположных граничных криволинейных рёбер, соединяющих его вершины, в

раз больше, чем ребро исходного правильного тетраэдра[89][90].

Тем не менее, тетраэдр Рёло можно видоизменить так, чтобы получившееся тело оказалось телом постоянной ширины. Для этого в каждой из трёх пар противоположных криволинейных рёбер одно ребро определённым образом «сглаживается»[90][91]. Получающиеся таким способом два различных тела (три ребра, на которых происходят замены, могут быть взяты либо исходящими из одной вершины, либо образующими треугольник[91]) называются телами Мейсснера, или тетраэдрами Мейсснера[89]. Сформулированная Томми Боннесеном[de] и Вернером Фенхелем в 1934 году[92] гипотеза утверждает, что именно эти тела минимизируют объём среди всех тел заданной постоянной ширины, однако (по состоянию на 2011 год) эта гипотеза не доказана[93][94].

Наконец, тело вращения, получаемое при вращении треугольника Рёло вокруг одной из его осей симметрии второго порядка, — тело постоянной ширины. Оно имеет наименьший объём среди всех тел вращения постоянной ширины[90][95][96].

Комментарии

  1. Встречаются и другие варианты транскрипции фамилии Reuleaux. Например, И. М. Яглом и В. Г. Болтянский в книге «Выпуклые фигуры» называют его «треугольником Релло».
  2. Опорная прямая проходит через одну точку границы фигуры, не разделяя при этом фигуру на части.
  3. 1 2 Центр треугольника Рёло — это точка пересечения всех медиан, биссектрис и высот его правильного треугольника.
  4. Для треугольника Рёло эта окружность совпадает с одной из трёх окружностей, которые образуют его границу.
  5. Это утверждение следует из совокупности двух теорем — классической изопериметрической задачи Дидоны и теоремы Барбье.
  6. Это свойство вполне характеризует фигуры постоянной ширины. Иначе говоря, любая фигура, вокруг которой можно «вращать» описанный квадрат, будет фигурой постоянной ширины.
  7. В оригинале — «We have all heard about left-handed monkey wrenches, fur-lined bathtubs, cast-iron bananas. We have all classed these things with the ridiculous and refused to believe that anything like that could ever happen, and right then along comes a tool that drills square holes!»
  8. Иначе говоря, равны центральные углы этих дуг.

Примечания

  1. 1 2 3 4 Соколов Д. Д. Постоянной ширины кривая // Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — Т. 4. — С. 519. — 608 с. — 150 000 экз.
  2. Яглом, Болтянский. Выпуклые фигуры, 1951, с. 91.
  3. Яглом, Болтянский. Выпуклые фигуры, 1951, с. 90.
  4. 1 2 Радемахер, Тёплиц, 1962, с. 206—207.
  5. 1 2 3 4 5 Finch S. R. Reuleaux Triangle Constants // Mathematical Constants. — Cambridge: Cambridge University Press, 2003. — P. 513—515. — 624 p. — (Encyclopedia of Mathematics and its Applications, Vol. 94). — ISBN 0-5218-1805-2.  (англ.)
  6. 1 2 3 4 5 Андреев Н. Н. Круглый треугольник Рело. Математические этюды. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  7. Pickover C. A.[en]. Reuleaux Triangle // The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. — New York; London: Sterling, 2009. — P. 266—267. — 528 p. — ISBN 1-4027-5796-4.  (англ.)
  8. Moon. The Machines of Leonardo Da Vinci and Franz Reuleaux, 2007, p. 240.
  9. 1 2 3 4 Taimina D., Henderson D. W. Reuleaux Triangle (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 11 октября 2011. Архивировано 10 мая 2012 года.
  10. 1 2 Moon. The Machines of Leonardo Da Vinci and Franz Reuleaux, 2007, p. 241.
  11. Snyder J. P.[en]. Emergence of Map Projections: Classical Through Renaissance // Flattening the Earth: Two Thousand Years of Map Projections. — Chicago; London: University Of Chicago Press, 1997. — P. 40. — 384 p. — ISBN 0-2267-6747-7.  (англ.)
  12. Постоянной ширины кривая // Математический энциклопедический словарь / Гл. ред. Ю. В. Прохоров. — М.: Советская энциклопедия, 1988. — С. 478. — 847 с. — 150 000 экз.
  13. WolframAlpha: Reuleaux Triangle (англ.). WolframAlpha. Wolfram Research. Дата обращения: 18 ноября 2011. (недоступная ссылка)
  14. Радемахер, Тёплиц, 1962, с. 201.
  15. Радемахер, Тёплиц, 1962, с. 201—202.
  16. Радемахер, Тёплиц, 1962, с. 202—203.
  17. Радемахер, Тёплиц, 1962, с. 203.
  18. Радемахер, Тёплиц, 1962, с. 203—204.
  19. Радемахер, Тёплиц, 1962, с. 204—206.
  20. Lenz H. Zur Zerlegung von Punktmengen in solche kleineren Durchmessers (нем.) // Archiv der Mathematik. — Basel: Birkhäuser Verlag, 1955. — Bd. 6, Nr. 5. — S. 413—416. — ISSN 0003-889X. — doi:10.1007/BF01900515.
  21. Райгородский А. М. Проблема Борсука. Универсальные покрышки // Математическое просвещение. — М.: МЦНМО, 2008. — Вып. 12. — С. 216. — ISBN 978-5-94057-354-8. Архивировано 16 сентября 2011 года.
  22. 1 2 Яглом, Болтянский. Выпуклые фигуры, 1951, с. 92.
  23. Eggleston. Convexity, 1958, p. 127—128.
  24. Barbier E. Note sur le problème de l’aiguille et le jeu du joint couvert (фр.) // Journal de Mathématiques Pures et Appliquées. — Paris: Imprimerie de Mallet-Hachelier, 1860. — Vol. 5. — P. 273—286. — ISSN 0021-7824. (недоступная ссылка)
  25. 1 2 Bogomolny A. The Theorem of Barbier (англ.). Cut the Knot. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  26. Eggleston. Convexity, 1958, p. 127.
  27. Eggleston. Convexity, 1958, p. 128—129.
  28. 1 2 Берже М. Геометрия = Géométrie / Пер. с франц. Ю. Н. Сударева, А. В. Пажитнова, С. В. Чмутова. — М.: Мир, 1984. — Т. 1. — С. 529—531. — 560 с.
  29. Blaschke W. Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts (нем.) // Mathematische Annalen. — Leipzig: Druck und Verlag von B. G. Teubner, 1915. — Bd. 76, Nr. 4. — S. 504—513. — ISSN 0025-5831. — doi:10.1007/BF01458221.
  30. Lebesgue H. Sur le problème des isopérimètres et sur les domaines de largeur constant (фр.) // Bulletin de la Société Mathématique de France, Comptes Rendus des Séances. — 1914. — Vol. 42. — P. 72—76. Архивировано 28 ноября 2016 года.
  31. Fujiwara M. Analytic Proof of Blaschke’s Theorem on the Curve of Constant Breadth with Minimum Area (англ.) // Proceedings of the Imperial Academy. — Tokyo: Japan Academy, 1927. — Vol. 3, no. 6. — P. 307—309. — ISSN 0369-9846. — doi:10.2183/pjab1912.3.307.
  32. Fujiwara M. Analytic Proof of Blaschke’s Theorem on the Curve of Constant Breadth with Minimum Area, II (англ.) // Proceedings of the Imperial Academy. — Tokyo: Japan Academy, 1931. — Vol. 7, no. 8. — P. 300—302. — ISSN 0369-9846. — doi:10.2183/pjab1912.7.300.
  33. Mayer A. E. Der Inhalt der Gleichdicke: Abschätzungen für ebene Gleichdicke (нем.) // Mathematische Annalen. — Berlin: Verlag von Julius Springer, 1935. — Bd. 110, Nr. 1. — S. 97—127. — ISSN 0025-5831. — doi:10.1007/BF01448020.
  34. Eggleston H. G. A Proof of Blaschke’s Theorem on the Reuleaux Triangle (англ.) // Quarterly Journal of Mathematics. — London: Oxford University Press, 1952. — Vol. 3, no. 1. — P. 296—297. — ISSN 0033-5606. — doi:10.1093/qmath/3.1.296.
  35. Besicovitch A. S. Minimum Area of a Set of Constant Width (англ.) // Proceedings of Symposia in Pure Mathematics. — Providence: American Mathematical Society, 1963. — Vol. 7 (Convexity). — P. 13—14. — ISBN 0-8218-1407-9. — ISSN 0082-0717.
  36. 1 2 Chakerian G. D. Sets of Constant Width (англ.) // Pacific Journal of Mathematics. — Berkeley: Pacific Journal of Mathematics Corporation, 1966. — Vol. 19, no. 1. — P. 13—21. — ISSN 0030-8730. Архивировано 4 марта 2016 года.
  37. Harrell E. M. A Direct Proof of a Theorem of Blaschke and Lebesgue (англ.) // Journal of Geometric Analysis. — St. Louis: Mathematica Josephina, 2002. — Vol. 12, no. 1. — P. 81—88. — ISSN 1050-6926. — doi:10.1007/BF02930861. arXiv:math.MG/0009137
  38. 1 2 3 Weisstein E. W. Reuleaux Triangle (англ.). Wolfram MathWorld. Дата обращения: 6 ноября 2011. Архивировано 2 апреля 2019 года.
  39. Болтянский В. Г. О вращении отрезка // Квант. — М.: Наука, 1973. — № 4. — С. 29. — ISSN 0130-2221. Архивировано 26 ноября 2007 года.
  40. 1 2 Besicovitch A. S. Measure of Asymmetry of Convex Curves (II): Curves of Constant Width (англ.) // Journal of the London Mathematical Society. — Oxford: Oxford University Press, 1951. — Vol. 26, no. 2. — P. 81—93. — ISSN 0024-6107. — doi:10.1112/jlms/s1-26.2.81.
  41. Eggleston H. G. Measure of Asymmetry of Convex Curves of Constant Width and Restricted Radii of Curvature (англ.) // Quarterly Journal of Mathematics. — London: Oxford University Press, 1952. — Vol. 3, no. 1. — P. 63—72. — ISSN 0033-5606. — doi:10.1093/qmath/3.1.63.
  42. Grünbaum B. Measures of Symmetry for Convex Sets (англ.) // Proceedings of Symposia in Pure Mathematics. — Providence: American Mathematical Society, 1963. — Vol. 7 (Convexity). — P. 233—270. — ISBN 0-8218-1407-9. — ISSN 0082-0717.
  43. Groemer H., Wallen L. J. A Measure of Asymmetry for Domains of Constant Width (англ.) // Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry. — Lemgo: Heldermann Verlag, 2001. — Vol. 42, no. 2. — P. 517—521. — ISSN 0138-4821. Архивировано 21 сентября 2015 года.
  44. Андреев Н. Н. Изобретая колесо. Математические этюды. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  45. 1 2 3 4 Андреев Н. Н. Сверление квадратных отверстий. Математические этюды. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  46. Белильцев В. Плюс геометрия! // Техника и наука. — М.: Профиздат, 1982. — № 7. — С. 14. — ISSN 0321-3269.
  47. 1 2 Klee V., Wagon S. Old and New Unsolved Problems in Plane Geometry and Number Theory. — Washington D.C.: Mathematical Association of America, 1996. — P. 22. — 356 p. — (Dolciani Mathematical Expositions, Vol. 11). — ISBN 0-8838-5315-9. (англ.)
  48. Wilson R. G. A066666: Decimal Expansion of Area Cut Out by a Rotating Reuleaux Triangle (англ.). OEIS. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  49. Цитата по книге Гарднер М. Математические досуги / Пер. с англ. Ю. А. Данилова. Под ред. А. Я. Смородинского. — М.: Мир, 1972. — С. 292. — 496 с.
  50. 1 2 Егупова М. Можно ли просверлить квадратное отверстие? // Наука и жизнь. — М.: АНО «Редакция журнала „Наука и жизнь“», 2010. — № 5. — С. 84—85. — ISSN 0028-1263.
  51. Watts H. J. U.S. patent 1,241,175 (Floating Tool-Chuck) (англ.). Дата обращения: 11 октября 2011. Архивировано 29 ноября 2015 года.
  52. Watts H. J. U.S. patent 1,241,176 (Drill or Boring Member) (англ.). Дата обращения: 11 октября 2011. Архивировано 29 декабря 2011 года.
  53. Smith. Drilling Square Holes, 1993.
  54. Darling D. J. Reuleaux Triangle // The Universal Book of Mathematics: From Abracadabra to Zeno’s Paradoxes. — Hoboken: Wiley, 2004. — P. 272. — 400 p. — ISBN 0-4712-7047-4.  (англ.)
  55. Morrell R. J., Gunn J. A., Gore G. D. U.S. patent 4,074,778 (Square Hole Drill) (англ.). Дата обращения: 11 октября 2011. Архивировано 28 декабря 2011 года.
  56. 1 2 Ванкеля двигатель // Политехнический словарь / Редкол.: А. Ю. Ишлинский (гл. ред.) и др.. — 3-е изд., перераб. и доп. — М.: Советская энциклопедия, 1989. — С. 72. — 656 с. — ISBN 5-8527-0003-7.
  57. Яглом, Болтянский. Выпуклые фигуры, 1951, с. 93—94.
  58. Кулагин С. В. Грейферный механизм // Фотокинотехника / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — С. 71. — 447 с. — 100 000 экз.
  59. White H. S. The Geometry of Leonhard Euler (англ.) // Leonhard Euler: Life, Work and Legacy / Eds. R. E. Bradley, C. E. Sandifer. — Amsterdam: Elsevier, 2007. — P. 309. — ISBN 0-4445-2728-1.
  60. Model: L01 Positive Return Mechanism with Curved Triangle (Model Metadata) (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 18 ноября 2011. Архивировано 23 мая 2012 года.
  61. Model: L02 Positive Return Cam (Model Metadata) (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 18 ноября 2011. Архивировано 23 мая 2012 года.
  62. Model: L06 Positive Return Cam  (Model Metadata) (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 18 ноября 2011. Архивировано 23 мая 2012 года.
  63. 1 2 Model: L01 Positive Return Mechanism with Curved Triangle (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  64. Model: L06 Positive Return Cam (англ.). Kinematic Models for Design Digital Library. Cornell University. Дата обращения: 11 октября 2011. Архивировано 23 мая 2012 года.
  65. Гопей И. A. Lange & Söhne Lange 31 // Мои часы. — М.: Часовая литература, 2010. — № 1. — С. 39. — ISSN 1681-5998. Архивировано 13 февраля 2011 года.
  66. 1 2 Gardner. The Unexpected Hanging and Other Mathematical Diversions, 1991, p. 212.
  67. 1 2 3 4 Бутузов В. Ф. и др. Окружность // Планиметрия. Пособие для углубленного изучения математики. — М.: Физматлит, 2005. — С. 265. — 488 с. — ISBN 5-9221-0635-X. Архивировано 18 сентября 2012 года.
  68. Коган Б. Ю. Удивительные катки // Квант. — М.: Наука, 1971. — № 3. — С. 21—24. — ISSN 0130-2221. Архивировано 28 марта 2012 года.
  69. Peterson. Mathematical Treks, 2002, p. 143.
  70. Fina Logo History: from Petrofina to Fina. total.com. Архивировано 26 декабря 2012 года.
  71. Bavaria. Дата обращения: 7 мая 2019.
  72. Roland B. Fischer. M-Blems: Explaining the logo (PDF) 29. Mines: The Magazine of Colorado School of Mines. Volume 92 Number 2 (весна 2002). Дата обращения: 7 мая 2019. Архивировано 10 июля 2010 года.
  73. Interim Approval for the Optional Use of an Alternative Design for the U.S. Bicycle Route (M1-9) Sign (IA-15) - Interim Approvals Issued by FHWA - FHWA MUTCD. mutcd.fhwa.dot.gov. Дата обращения: 7 мая 2019. Архивировано 5 марта 2020 года.
  74. Алексей Гончаров. Налетай, подешевело: Samsung S3650 Corby. Nomobile (28 сентября 2009). Дата обращения: 7 мая 2019. Архивировано из оригинала 14 февраля 2019 года.
  75. Павел Урусов. Обзор мобильного телефона Samsung S3650 Corby. GaGadget (18 января 2010). Дата обращения: 2 марта 2019. Архивировано 14 февраля 2019 года.
  76. 1 2 Brinkworth P., Scott P. Fancy Gothic of Hauterive (англ.). The Place Of Mathematics. Дата обращения: 11 октября 2011. Архивировано 5 апреля 2013 года.
  77. 1 2 Scott P. Reuleaux Triangle Window (англ.). Mathematical Photo Gallery. Дата обращения: 11 октября 2011. Архивировано 1 мая 2013 года.
  78. KölnTriangle: Architecture (англ.). Официальный сайт KölnTriangle. Дата обращения: 11 октября 2011. Архивировано из оригинала 22 июня 2013 года.
  79. Anderson P. The Three-Cornered Wheel (англ.) // Analog Science Fact — Science Fiction. — New York: Condé Nast Publications, 1963/10. — Vol. LXXII, no. 2. — P. 50—69.
  80. 1 2 Gardner. The Unexpected Hanging and Other Mathematical Diversions, 1991, p. 215—216.
  81. 1 2 Bezdek M. On a Generalization of the Blaschke-Lebesgue Theorem for Disk-Polygons (англ.) // Contributions to Discrete Mathematics. — 2011. — Vol. 6, no. 1. — P. 77—85. — ISSN 1715-0868. (недоступная ссылка)
  82. 1 2 Eggleston. Convexity, 1958, p. 128.
  83. Яглом, Болтянский. Выпуклые фигуры, 1951, с. 98—102.
  84. 1 2 Firey W. J. Isoperimetric Ratios of Reuleaux Polygons (англ.) // Pacific Journal of Mathematics. — Berkeley: Pacific Journal of Mathematics Corporation, 1960. — Vol. 10, no. 3. — P. 823—829. — ISSN 0030-8730. Архивировано 13 августа 2016 года.
  85. Sallee G. T. Maximal Areas of Reuleaux Polygons (англ.) // Canadian Mathematical Bulletin. — Ottawa: Canadian Mathematical Society, 1970. — Vol. 13, no. 2. — P. 175—179. — ISSN 0008-4395. — doi:10.4153/CMB-1970-037-1. (недоступная ссылка)
  86. United Kingdom 20p Coin (англ.). Официальный сайт королевского монетного двора Великобритании. Дата обращения: 6 ноября 2011. Архивировано из оригинала 12 февраля 2012 года.
  87. United Kingdom 50p Coin (англ.). Официальный сайт королевского монетного двора Великобритании. Дата обращения: 6 ноября 2011. Архивировано 23 мая 2012 года.
  88. Колёса с углами: изобретаем велосипед. Сайт «Популярная механика» (29 мая 2009). Дата обращения: 6 ноября 2011. Архивировано 18 октября 2010 года.
  89. 1 2 Weisstein E. W. Reuleaux Tetrahedron (англ.). Wolfram MathWorld. Дата обращения: 6 ноября 2011. Архивировано 3 сентября 2011 года.
  90. 1 2 3 Kawohl B., Weber C. Meissner’s Mysterious Bodies (англ.) // Mathematical Intelligencer. — New York: Springer, 2011. — Vol. 33, no. 3. — P. 94—101. — ISSN 0343-6993. — doi:10.1007/s00283-011-9239-y. Архивировано 13 июля 2012 года.
  91. 1 2 Gardner. The Unexpected Hanging and Other Mathematical Diversions, 1991, p. 218.
  92. Bonnesen T., Fenchel W. Theorie der konvexen Körper. — Berlin: Verlag von Julius Springer, 1934. — S. 127—139. — (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, Heft 1).  (нем.)
  93. Kawohl B. Convex Sets of Constant Width (англ.) // Oberwolfach Reports. — Zurich: European Mathematical Society Publishing House, 2009. — Vol. 6, no. 1. — P. 390—393. Архивировано 2 июня 2013 года.
  94. Anciaux H., Guilfoyle B. On the Three-Dimensional Blaschke-Lebesgue Problem (англ.) // Proceedings of the American Mathematical Society. — Providence: American Mathematical Society, 2011. — Vol. 139, no. 5. — P. 1831—1839. — ISSN 0002-9939. — doi:10.1090/S0002-9939-2010-10588-9. arXiv:0906.3217
  95. Campi S., Colesanti A., Gronchi P. Minimum Problems for Volumes of Convex Bodies (англ.) // Partial Differential Equations and Applications / Eds. P. Marcellini, G. Talenti, E. Visintin. — New York: Marcel Dekker, 1996. — P. 43—55. — ISBN 0-8247-9698-5.
  96. Anciaux H., Georgiou N. The Blaschke-Lebesgue Problem for Constant Width Bodies of Revolution (англ.). arXiv:0903.4284

Литература

На русском языке

На английском языке

Ссылки


Эта страница в последний раз была отредактирована 24 января 2024 в 08:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).