Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Трохо́ида (от греч. τροχοειδής — колесообразный) — Общее название циклоидальных кривых, которые описывает точка, находящаяся внутри или вне круга, катящегося без скольжения по направляющей, плоская трансцендентная кривая. Если направляющая — прямая линия, то трохоида является циклоидой, если направляющая круг, то трохоида будет являться гипотрохоидой (качение происходит по внутренней стороне направляющего круга) или эпитрохоидой (качение происходит по внешней стороне направляющего круга).[1]

Уравнения

Параметрические уравнения:

где h — расстояние точки от центра окружности, r — радиус окружности; окружность катится по прямой, совпадающей с горизонтальной осью координат.

Примеры

Если трохоида переходит в циклоиду. При трохоиду называют удлинённой циклоидой, а при  — укороченной циклоидой.

Укороченные циклоиды описывает любая точка катящегося колеса, расположенная внутри его обода. Колёса железнодорожного транспорта, трамваев и т. п. имеют реборды (выступающие гребни, не дающие вагону сойти с рельсов); точки, расположенные на ребордах, описывают удлинённую циклоиду.

Практическая реализация в электровакуумных приборах — трохотронах, в которых электроны перемещаются по трохоидальным кривым.

Также трохоидальное зацепление используется в героторных гидромашинах, являющихся разновидностью шестерённых гидромашин.

См. также

Примечания

  1. Толковый математический словарь.(под ред.канд. физ.-мат. наук А. П. Савина) М.,"Русский язык", 1989 г.

Ссылки

Эта страница в последний раз была отредактирована 3 февраля 2020 в 08:23.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).