Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Графики тригонометрических функций y(x) = sin(x) и y(x) = cos(x) на декартовой плоскости являются синусоидами.
Графики тригонометрических функций y(x) = sin(x) и y(x) = cos(x) на декартовой плоскости являются синусоидами.

Синусо́ида — плоская кривая, задаваемая в прямоугольных координатах уравнением

График уравнения [косинусоиды] вида

также зачастую называется синусоидой. Данный график получается из синусоидального сдвигом на в отрицательном направлении оси абсцисс. Термин «косинусоида» практически отсутствует в официальной литературе, поскольку является излишним.

В приведённых формулах a, b, c, d — постоянные;

  • a характеризует сдвиг графика по оси Oy. Чем больше a, тем выше поднимается график;
  • b характеризует растяжение графика по оси Oy. Чем больше увеличивается b, тем сильнее возрастает амплитуда колебаний;
  • с характеризует растяжение графика по оси Ox. При увеличении c частота колебаний повышается ;
  • d характеризует сдвиг графика по оси Ox. При увеличении d график двигается в отрицательном направлении оси абсцисс.

Синусоидальное изменение какой-либо величины называется гармоническим колебанием. Примерами могут являться любые колебательные процессы начиная от качания маятника и кончая звуковыми волнами (гармонические колебания воздуха) — колебания напряжения в электрической сети переменного тока, изменение тока и напряжения в колебательном контуре и др. Также синусоида — проекция на плоскость винтовой линии, например, скрученного провода; рулон бумаги разрезанный наискось (косо усечённый цилиндр) и развернутый — край бумаги оказывается разрезанным по синусоиде.

Синусоида была впервые рассмотрена Робервалем в 1634 году. При вычислении площади под графиком циклоиды он рассмотрел вспомогательную кривую, образуемую проекциями точки окружности, катящейся по прямой, на вертикальный диаметр этой окружности. Роберваль назвал эту кривую «спутницей циклоиды»; позднее Оноре Фабри стал называть её «линией синусов».[1]

Синусоида может пересекать прямую в бесконечном числе точек (например, график функции пересекает прямую в точках с координатами ). Из теоремы Безу следует, что любая кривая с таким свойством является трансцендентной.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    64 603
    73 699
    2 614
    66 815
    123 228
  • График синуса или откуда берется синусоида?
  • 10 класс, 16 урок, Функции y= sinx, y=cosx, их свойства и графики
  • Построение синусоиды.
  • 33. Тригонометрия на ЕГЭ по математике. Графики синуса и косинуса.
  • ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ 10 класс графики тригонометрических функций

Субтитры

Примечания

Ссылки

Эта страница в последний раз была отредактирована 18 июля 2021 в 13:58.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).