To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Kauffman polynomial

From Wikipedia, the free encyclopedia

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman.[1] It is initially defined on a link diagram as

where is the writhe of the link diagram and is a polynomial in a and z defined on link diagrams by the following properties:

  • (O is the unknot)
  • L is unchanged under type II and III Reidemeister moves

Here is a strand and (resp. ) is the same strand with a right-handed (resp. left-handed) curl added (using a type I Reidemeister move).

Additionally L must satisfy Kauffman's skein relation:

Kauffman poly.png

The pictures represent the L polynomial of the diagrams which differ inside a disc as shown but are identical outside.

Kauffman showed that L exists and is a regular isotopy invariant of unoriented links. It follows easily that F is an ambient isotopy invariant of oriented links.

The Jones polynomial is a special case of the Kauffman polynomial, as the L polynomial specializes to the bracket polynomial. The Kauffman polynomial is related to Chern-Simons gauge theories for SO(N) in the same way that the HOMFLY polynomial is related to Chern-Simons gauge theories for SU(N).[2]

YouTube Encyclopedic

  • 1/2
    1 082
    1 688
  • Introduction to the Kauffman Bracket
  • Trefoil knot



  1. ^ Kauffman, Louis (1990). "An Invariant of Regular Isotopy" (PDF). Transactions of the American Mathematical Society. 318 (2): 417–471. doi:10.1090/S0002-9947-1990-0958895-7. Retrieved 2016-09-02.
  2. ^ Witten, Edward (1989). "Quantum field theory and the Jones polynomial". Comm. Math. Phys. 121 (3): 351–399. doi:10.1007/BF01217730. Retrieved 2016-09-02.

Further reading

External links

This page was last edited on 18 February 2018, at 00:20
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.