To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Knot complement

From Wikipedia, the free encyclopedia

Unknot complement is homeomorphic to a solid torus.
Hopf band is one Hopf link complement.

In mathematics, the knot complement of a tame knot K is the three-dimensional space surrounding the knot. To make this precise, suppose that K is a knot in a three-manifold M (most often, M is the 3-sphere). Let N be a tubular neighborhood of K; so N is a solid torus. The knot complement is then the complement of N,

The knot complement XK is a compact 3-manifold; the boundary of XK and the boundary of the neighborhood N are homeomorphic to a two-torus. Sometimes the ambient manifold M is understood to be 3-sphere. Context is needed to determine the usage. There are analogous definitions of link complement.

Many knot invariants, such as the knot group, are really invariants of the complement of the knot. When the ambient space is the three-sphere no information is lost: the Gordon–Luecke theorem states that a knot is determined by its complement. That is, if K and K′ are two knots with homeomorphic complements then there is a homeomorphism of the three-sphere taking one knot to the other.

YouTube Encyclopedic

  • 1/3
    3 046
    7 168
  • Triangulating the figure 8 knot complement
  • Figure 8 knot complement
  • Not Knot


See also

Further reading

This page was last edited on 11 February 2016, at 23:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.