To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Conway notation (knot theory)

From Wikipedia, the free encyclopedia

 The full set of fundamental transformations and operations on 2-tangles, alongside the elementary tangles 0, ∞, ±1 and ±2.
The full set of fundamental transformations and operations on 2-tangles, alongside the elementary tangles 0, ∞, ±1 and ±2.
 The trefoil knot has Conway notation [3].
The trefoil knot has Conway notation [3].

In knot theory, Conway notation, invented by John Horton Conway, is a way of describing knots that makes many of their properties clear. It composes a knot using certain operations on tangles to construct it.

Basic concepts

Tangles

In Conway notation, the tangles are generally algebraic 2-tangles. This means their tangle diagrams consist of 2 arcs and 4 points on the edge of the diagram; furthermore, they are built up from rational tangles using the Conway operations.

[The following seems to be attempting to describe only integer or 1/n rational tangles] Tangles consisting only of positive crossings are denoted by the number of crossings, or if there are only negative crossings it is denoted by a negative number. If the arcs are not crossed, or can be transformed to into an uncrossed position with the Reidemeister moves, it is called the 0 or ∞ tangle, depending on the orientation of the tangle.

Operations on tangles

If a tangle, a, is reflected on the NW-SE line, it is denoted by a. (Note that this is different from a tangle with a negative number of crossings.)Tangles have three binary operations, sum, product, and ramification,[1] however all can be explained using tangle addition and negation. The tangle product, a b, is equivalent to a+b. and ramification or a,b, is equivalent to a+b.

Advanced concepts

Rational tangles are equivalent if and only if their fractions are equal. An accessible proof of this fact is given in (Kauffman and Lambropoulou 2004). A number before an asterisk, *, denotes the polyhedron number; multiple asterisks indicate that multiple polyhedra of that number exist. [2]

See also

References

Further reading

  • Conway, J. H. "An Enumeration of Knots and Links, and Some of Their Algebraic Properties." In J. Leech (editor), Computational Problems in Abstract Algebra. Oxford, England. Pergamon Press, pp. 329-358, 1970. pdf available online
  • Louis H. Kauffman, Sofia Lambropoulou: On the classification of rational tangles. Advances in Applied Mathematics, 33, No. 2 (2004), 199-237. preprint available at arxiv.org.
This page was last modified on 1 July 2015, at 14:59.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.