To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

A slice knot is a type of mathematical knot. In knot theory, a "knot" means an embedded circle in the 3-sphere

and that the 3-sphere can be thought of as the boundary of the four-dimensional ball

A knot is slice if it bounds a nicely embedded disk D in the 4-ball.[1]

What is meant by "nicely embedded" depends on the context, and there are different terms for different kinds of slice knots. If D is smoothly embedded in B4, then K is said to be smoothly slice. If D is only locally flat (which is weaker), then K is said to be topologically slice.

Every ribbon knot is smoothly slice. An old question of Fox asks whether every slice knot is actually a ribbon knot.[2]

The signature of a slice knot is zero.[3]

The Alexander polynomial of a slice knot factors as a product where is some integral Laurent polynomial.[3] This is known as the Fox–Milnor condition.[4]

The following is a list of all slice knots with 10 or fewer crossings; it was compiled using the Knot Atlas[full citation needed]: 61, , , , , , , , , , , , , , , , , , , and .

YouTube Encyclopedic

  • 1/1
    1 690
  • Trefoil knot


See also


  1. ^ Lickorish, W. B. Raymond (1997), An Introduction to Knot Theory, Graduate Texts in Mathematics, 175, Springer, p. 86, ISBN 9780387982540 .
  2. ^ Gompf, Robert E.; Scharlemann, Martin; Thompson, Abigail (2010), "Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures", Geometry & Topology, 14 (4): 2305–2347, MR 2740649, doi:10.2140/gt.2010.14.2305 .
  3. ^ a b Lickorish (1997), p. 90.
  4. ^ Banagl, Markus; Vogel, Denis (2010), The Mathematics of Knots: Theory and Application, Contributions in Mathematical and Computational Sciences, 1, Springer, p. 61, ISBN 9783642156373 .

This page was last edited on 24 December 2016, at 09:22.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.