To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Mutation (knot theory)

From Wikipedia, the free encyclopedia

The prime Kinoshita–Terasaka knot (11n42) and the prime Conway knot (11n34) respectively, and how they are related by mutation.
The prime Kinoshita–Terasaka knot (11n42) and the prime Conway knot (11n34) respectively, and how they are related by mutation.

In the mathematical field of knot theory, a mutation is an operation on a knot that can produce different knots. Suppose K is a knot given in the form of a knot diagram. Consider a disc D in the projection plane of the diagram whose boundary circle intersects K exactly four times. We may suppose that (after planar isotopy) the disc is geometrically round and the four points of intersection on its boundary with K are equally spaced. The part of the knot inside the disc is a tangle. There are two reflections that switch pairs of endpoints of the tangle. There is also a rotation that results from composition of the reflections. A mutation replaces the original tangle by a tangle given by any of these operations. The result will always be a knot and is called a mutant of K.

Mutants can be difficult to distinguish as they have a number of the same invariants. They have the same hyperbolic volume (by a result of Ruberman), and have the same HOMFLY polynomials.

YouTube Encyclopedic

  • 1/3
    8 647
    1 298
  • ✪ Alien Mathematics
  • ✪ Jørgen Andersen - Protein Folding Using Quantum Topology
  • ✪ Colloquium: Peter Armitage, March 27, 2014



  • Conway and Kinoshita-Terasaka mutant pair, distinguished as knot genus 3 and 2, respectively.


Further reading

  • Colin Adams, The Knot Book, American Mathematical Society, ISBN 0-8050-7380-9
This page was last edited on 24 June 2017, at 21:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.