To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

List of prime knots

From Wikipedia, the free encyclopedia

In knot theory, prime knots are those knots that are indecomposable under the operation of knot sum. The prime knots with ten or fewer crossings are listed here for quick comparison of their properties and varied naming schemes.

YouTube Encyclopedic

  • 1/5
    Views:
    76 651
    3 973 154
    941
    7 918
    190 143
  • Walmart Bankline vs Pathfinder Bankline Survival on a Shoestring
  • Octonauts: Gup I Close Up
  • John Wesley and His Ministry (biography) - J. C. Ryle / Audio Book
  • Counterfeit Christianity! - Bishop J. C. Ryle Sermon
  • Math is the hidden secret to understanding the world | Roger Antonsen

Transcription

Contents

Table of prime knots

Six or fewer crossings

Name Picture Alexander-
Briggs
-
Rolfsen
Dowker-
Thistlethwaite
Dowker
notation
Conway
notation
Unknot
Blue Unknot.png
01 0a1
Trefoil knot
Blue Trefoil Knot.png
31 3a1 4 6 2 [3]
Figure-eight knot
Blue Figure-Eight Knot.png
41 4a1 4 6 8 2 [22]
Cinquefoil knot
Blue Cinquefoil Knot.png
51 5a2 6 8 10 2 4 [5]
Three-twist knot
Blue Three-Twist Knot.png
52 5a1 4 8 10 2 6 [32]
Stevedore knot
Blue Stevedore Knot.png
61 6a3 4 8 12 10 2 6 [42]
62 knot
Blue 6 2 Knot.png
62 6a2 4 8 10 12 2 6 [312]
63 knot
Blue 6 3 Knot.png
63 6a1 4 8 10 2 12 6 [2112]

Seven crossings

Picture Alexander-
Briggs-
Rolfsen
Dowker-
Thistlethwaite
Dowker notation Conway
notation
Blue 7 1 Knot.png
71 7a7 8 10 12 14 2 4 6 [7]
Blue 7 2 Knot.png
72 7a4 4 10 14 12 2 8 6 [52]
7-3 knot.svg
73 7a5 6 10 12 14 2 4 8 [43]
Celtic-knot-linear-7crossings.svg
74 7a6 6 10 12 14 4 2 8 [313]
7-5 knot.svg
75 7a3 4 10 12 14 2 8 6 [322]
7-6 knot.svg
76 7a2 4 8 12 2 14 6 10 [2212]
7-7 knot.svg
77 7a1 4 8 10 12 2 14 6 [21112]

Eight crossings

Picture Alexander-
Briggs-
Rolfsen
Dowker-
Thistlethwaite
Dowker notation Conway
notation
Blue 8 1 Knot.png
81 8a­11 4 10 16 14 12 2 8 6 [62]
Knot-8-2.png
82 8a8 4 10 12 14 16 2 6 8 [512]
83 8a­18 6 12 10 16 14 4 2 8 [44]
8-4 Knot.svg
84 8a­17 6 10 12 16 14 4 2 8 [413]
85 8a­13 6 8 12 2 14 16 4 10 [3,3,2]
8-6 knot.svg
86 8a­10 4 10 14 16 12 2 8 6 [332]
87 8a6 4 10 12 14 2 16 6 8 [4112]
88 8a4 4 8 12 2 16 14 6 10 [2312]
89 8a­16 6 10 12 14 16 4 2 8 [3113]
810 8a3 4 8 12 2 14 16 6 10 [3,21,2]
811 8a9 4 10 12 14 16 2 8 6 [3212]
8crossings-rose-limacon-knot.svg
812 8a5 4 8 14 10 2 16 6 12 [2222]
813 8a7 4 10 12 14 2 16 8 6 [31112]
814 8a1 4 8 10 14 2 16 6 12 [22112]
8crossings-two-trefoils.svg
815 8a2 4 8 12 2 14 6 16 10 [21,21,2]
8-16 knot.svg
816 8a­15 6 8 14 12 4 16 2 10 [.2.20]
8 17 Knot.svg
817 8a­14 6 8 12 14 4 16 2 10 [.2.2]
8crossing-symmetrical.svg
818 8a­12 6 8 10 12 14 16 2 4 [8*]
8crossing-symmetrical-nonalternating.svg
819 8n3 4 8 -12 2 -14 -16 -6 -10 [3,3,2-]
Knot 8 20.svg
820 8n1 4 8 -12 2 -14 -6 -16 -10 [3,21,2-]
Lissajous 8 21 Knot.png
821 8n2 4 8 -12 2 14 -6 16 10 [21,21,2-]

Nine crossings

Picture Alexander-
Briggs-
Rolfsen
Dowker-
Thistlethwaite
Dowker notation Conway
notation
9-2 star polygon interlaced.svg
91 9a­41 10 12 14 16 18 2 4 6 8 [9]
92 9a­27 4 12 18 16 14 2 10 8 6 [72]
93 9a­38 8 12 14 16 18 2 4 6 10 [63]
94 9a­35 6 12 14 18 16 2 4 10 8 [54]
95 9a­36 6 12 14 18 16 4 2 10 8 [513]
96 9a­23 4 12 14 16 18 2 10 6 8 [522]
97 9a­26 4 12 16 18 14 2 10 8 6 [342]
98 9a8 4 8 14 2 18 16 6 12 10 [2412]
99 9a­33 6 12 14 16 18 2 4 10 8 [423]
910 9a­39 8 12 14 16 18 2 6 4 10 [333]
911 9a­20 4 10 14 16 12 2 18 6 8 [4122]
912 9a­22 4 10 16 14 2 18 8 6 12 [4212]
913 9a­34 6 12 14 16 18 4 2 10 8 [3213]
914 9a­17 4 10 12 16 14 2 18 8 6 [41112]
915 9a­10 4 8 14 10 2 18 16 6 12 [2322]
916 9a­25 4 12 16 18 14 2 8 10 6 [3,3,2+]
917 9a­14 4 10 12 14 16 2 6 18 8 [21312]
918 9a­24 4 12 14 16 18 2 10 8 6 [3222]
919 9a3 4 8 10 14 2 18 16 6 12 [23112]
920 9a­19 4 10 14 16 2 18 8 6 12 [31212]
921 9a­21 4 10 14 16 12 2 18 8 6 [31122]
922 9a2 4 8 10 14 2 16 18 6 12 [211,3,2]
9crossing-knot symmetrical grid.svg
923 9a­16 4 10 12 16 2 8 18 6 14 [22122]
924 9a7 4 8 14 2 16 18 6 12 10 [3,21,2+]
925 9a4 4 8 12 2 16 6 18 10 14 [22,21,2]
926 9a­15 4 10 12 14 16 2 18 8 6 [311112]
927 9a­12 4 10 12 14 2 18 16 6 8 [212112]
928 9a5 4 8 12 2 16 14 6 18 10 [21,21,2+]
929 9a­31 6 10 14 18 4 16 8 2 12 [.2.20.2]
930 9a1 4 8 10 14 2 16 6 18 12 [211,21,2]
931 9a­13 4 10 12 14 2 18 16 8 6 [2111112]
932 9a6 4 8 12 14 2 16 18 10 6 [.21.20]
933 9a­11 4 8 14 12 2 16 18 10 6 [.21.2]
934 9a­28 6 8 10 16 14 18 4 2 12 [8*20]
9crossings-threesymmetric-other.svg
935 9a­40 8 12 16 14 18 4 2 6 10 [3,3,3]
936 9a9 4 8 14 10 2 16 18 6 12 [22,3,2]
937 9a­18 4 10 14 12 16 2 6 18 8 [3,21,21]
938 9a­30 6 10 14 18 4 16 2 8 12 [.2.2.2]
939 9a­32 6 10 14 18 16 2 8 4 12 [2:2:20]
Knot-9crossings-symmetrical.svg
940 9a­27 6 16 14 12 4 2 18 10 8 [9*]
9crossings-decorative-knot-threefold-incircle.svg
941 9a­29 6 10 14 12 16 2 18 4 8 [20:20:20]
942 9n4 4 8 10 −14 2 −16 −18 −6 −12 [22,3,2−]
943 9n3 4 8 10 14 2 −16 6 −18 −12 [211,3,2−]
944 9n1 4 8 10 −14 2 −16 −6 −18 −12 [22,21,2−]
945 9n2 4 8 10 −14 2 16 −6 18 12 [211,21,2−]
946 9n5 4 10 −14 −12 −16 2 −6 −18 −8 [3,3,21−]
9-crossing non-alternating 3-symmetrical.svg
947 9n7 6 8 10 16 14 −18 4 2 −12 [8*-20]
948 9n6 4 10 −14 −12 16 2 −6 18 8 [21,21,21−]
949 9n8 6 -10 −14 12 −16 −2 18 −4 −8 [−20:−20:−20]

Ten crossings

Picture Alexander-
Briggs-
Rolfsen
Dowker-
Thistlethwaite
Dowker notation Conway
notation
101 10a­75 4 12 20 18 16 14 2 10 8 6 [82]
102 10a­59 4 12 14 16 18 20 2 6 8 10 [712]
103 10a­­117 6 14 12 20 18 16 4 2 10 8 [64]
104 10a­­113 6 12 14 20 18 16 4 2 10 8 [613]
105 10a­56 4 12 14 16 18 2 20 6 8 10 [6112]
106 10a­70 4 12 16 18 20 14 2 10 6 8 [532]
107 10a­65 4 12 14 18 16 20 2 10 8 6 [5212]
108 10a­­114 6 14 12 16 18 20 4 2 8 10 [514]
109 10a­­110 6 12 14 16 18 20 4 2 8 10 [5113]
1010 10a­64 4 12 14 18 16 2 20 10 8 6 [51112]
1011 10a­­116 6 14 12 18 20 16 4 2 10 8 [433]
1012 10a­43 4 10 14 16 2 20 18 6 8 12 [4312]
1013 10a­54 4 10 18 16 12 2 20 8 6 14 [4222]
1014 10a­33 4 10 12 16 18 2 20 6 8 14 [42112]
1015 10a­68 4 12 16 18 14 2 10 20 6 8 [4132]
1016 10a­­115 6 14 12 16 18 20 4 2 10 8 [4123]
1017 10a­­107 6 12 14 16 18 2 4 20 8 10 [4114]
1018 10a­63 4 12 14 18 16 2 10 20 8 6 [41122]
1019 10a­­108 6 12 14 16 18 2 4 20 10 8 [41113]
1020 10a­74 4 12 18 20 16 14 2 10 8 6 [352]
1021 10a­60 4 12 14 16 18 20 2 6 10 8 [3412]
1022 10a­­112 6 12 14 18 20 16 4 2 10 8 [3313]
1023 10a­57 4 12 14 16 18 2 20 6 10 8 [33112]
1024 10a­71 4 12 16 18 20 14 2 10 8 6 [3232]
Knot-10-25-sm.png
1025 10a­61 4 12 14 16 18 20 2 10 8 6 [32212]
1026 10a­­111 6 12 14 16 18 20 4 2 10 8 [32113]
1027 10a­58 4 12 14 16 18 2 20 10 8 6 [321112]
1028 10a­44 4 10 14 16 2 20 18 8 6 12 [31312]
1029 10a­53 4 10 16 18 12 2 20 8 6 14 [31222]
1030 10a­34 4 10 12 16 18 2 20 8 6 14 [312112]
1031 10a­69 4 12 16 18 14 2 10 20 8 6 [31132]
1032 10a­55 4 12 14 16 18 2 10 20 8 6 [311122]
1033 10a­­109 6 12 14 16 18 4 2 20 10 8 [311113]
1034 10a­19 4 8 14 2 20 18 16 6 12 10 [2512]
1035 10a­23 4 8 16 10 2 20 18 6 14 12 [2422]
1036 10a5 4 8 10 16 2 20 18 6 14 12 [24112]
1037 10a­49 4 10 16 12 2 8 20 18 6 14 [2332]
1038 10a­29 4 10 12 16 2 8 20 18 6 14 [23122]
1039 10a­26 4 10 12 14 18 2 6 20 8 16 [22312]
1040 10a­30 4 10 12 16 2 20 6 18 8 14 [222112]
1041 10a­35 4 10 12 16 20 2 8 18 6 14 [221212]
1042 10a­31 4 10 12 16 2 20 8 18 6 14 [2211112]
1043 10a­52 4 10 16 14 2 20 8 18 6 12 [212212]
1044 10a­32 4 10 12 16 14 2 20 18 8 6 [2121112]
1045 10a­25 4 10 12 14 16 2 20 18 8 6 [21111112]
1046 10a­81 6 8 14 2 16 18 20 4 10 12 [5,3,2]
1047 10a­15 4 8 14 2 16 18 20 6 10 12 [5,21,2]
1048 10a­79 6 8 14 2 16 18 4 20 10 12 [41,3,2]
1049 10a­13 4 8 14 2 16 18 6 20 10 12 [41,21,2]
1050 10a­82 6 8 14 2 16 18 20 4 12 10 [32,3,2]
1051 10a­16 4 8 14 2 16 18 20 6 12 10 [32,21,2]
1052 10a­80 6 8 14 2 16 18 4 20 12 10 [311,3,2]
1053 10a­14 4 8 14 2 16 18 6 20 12 10 [311,21,2]
1054 10a­48 4 10 16 12 2 8 18 20 6 14 [23,3,2]
1055 10a9 4 8 12 2 16 6 20 18 10 14 [23,21,2]
1056 10a­28 4 10 12 16 2 8 18 20 6 14 [221,3,2]
1057 10a6 4 8 12 2 14 18 6 20 10 16 [221,21,2]
1058 10a­20 4 8 14 10 2 18 6 20 12 16 [22,22,2]
10-59 knot theory square.svg
1059 10a2 4 8 10 14 2 18 6 20 12 16 [22,211,2]
10-60 knot theory square.svg
1060 10a1 4 8 10 14 2 16 18 6 20 12 [211,211,2]
1061 10a­­123 8 10 16 14 2 18 20 6 4 12 [4,3,3]
1062 10a­41 4 10 14 16 2 18 20 6 8 12 [4,3,21]
1063 10a­51 4 10 16 14 2 18 8 6 20 12 [4,21,21]
1064 10a­­122 8 10 14 16 2 18 20 6 4 12 [31,3,3]
1065 10a­42 4 10 14 16 2 18 20 8 6 12 [31,3,21]
1066 10a­40 4 10 14 16 2 18 8 6 20 12 [31,21,21]
1067 10a­37 4 10 14 12 18 2 6 20 8 16 [22,3,21]
1068 10a­67 4 12 16 14 18 2 20 6 10 8 [211,3,3]
1069 10a­38 4 10 14 12 18 2 16 6 20 8 [211,21,21]
1070 10a­22 4 8 16 10 2 18 20 6 14 12 [22,3,2+]
1071 10a­10 4 8 12 2 18 14 6 20 10 16 [22,21,2+]
1072 10a4 4 8 10 16 2 18 20 6 14 12 [211,3,2+]
1073 10a3 4 8 10 14 2 18 16 6 20 12 [211,21,2+]
1074 10a­62 4 12 14 16 20 18 2 8 6 10 [3,3,21+]
Vodicka knot modified.svg
1075 10a­27 4 10 12 14 18 2 16 6 20 8 [21,21,21+]
1076 10a­73 4 12 18 20 14 16 2 10 8 6 [3,3,2++]
1077 10a­18 4 8 14 2 18 20 16 6 12 10 [3,21,2++]
1078 10a­17 4 8 14 2 18 16 6 12 20 10 [21,21,2++]
1079 10a­78 6 8 12 2 16 4 18 20 10 14 [(3,2)(3,2)]
1080 10a8 4 8 12 2 16 6 18 20 10 14 [(3,2)(21,2)]
1081 10a7 4 8 12 2 16 6 18 10 20 14 [(21,2)(21,2)]
1082 10a­83 6 8 14 16 4 18 20 2 10 12 [.4.2]
1083 10a­84 6 8 16 14 4 18 20 2 12 10 [.31.20]
1084 10a­50 4 10 16 14 2 8 18 20 12 6 [.22.2]
1085 10a­86 6 8 16 14 4 18 20 2 10 12 [.4.20]
1086 10a­87 6 8 14 16 4 18 20 2 12 10 [.31.2]
1087 10a­39 4 10 14 16 2 8 18 20 12 6 [.22.20]
1088 10a­11 4 8 12 14 2 16 20 18 10 6 [.21.21]
1089 10a­21 4 8 14 12 2 16 20 18 10 6 [.21.210]
1090 10a­92 6 10 14 2 16 20 18 8 4 12 [.3.2.2]
1091 10a­­106 6 10 20 14 16 18 4 8 2 12 [.3.2.20]
1092 10a­46 4 10 14 18 2 16 8 20 12 6 [.21.2.20]
1093 10a­­101 6 10 16 20 14 4 18 2 12 8 [.3.20.2]
1094 10a­91 6 10 14 2 16 18 20 8 4 12 [.30.2.2]
1095 10a­47 4 10 14 18 2 16 20 8 12 6 [.210.2.2]
1096 10a­24 4 8 18 12 2 16 20 6 10 14 [.2.21.2]
1097 10a­12 4 8 12 18 2 16 20 6 10 14 [.2.210.2]
1098 10a­96 6 10 14 18 2 16 20 4 8 12 [.2.2.2.20]
1099 10a­­103 6 10 18 14 2 16 20 8 4 12 [.2.2.20.20]
10100 10a­­104 6 10 18 14 16 4 20 8 2 12 [3:2:2]
10101 10a­45 4 10 14 18 2 16 6 20 8 12 [21:2:2]
10102 10a­97 6 10 14 18 16 4 20 2 8 12 [3:2:20]
10103 10a­­105 6 10 18 16 14 4 20 8 2 12 [30:2:2]
10104 10a­­118 6 16 12 14 18 4 20 2 8 10 [3:20:20]
10105 10a­72 4 12 16 20 18 2 8 6 10 14 [21:20:20]
10106 10a­95 6 10 14 16 18 4 20 2 8 12 [30:2:20]
10107 10a­66 4 12 16 14 18 2 8 20 10 6 [210:2:20]
10108 10a­­119 6 16 12 14 18 4 20 2 10 8 [30:20:20]
10109 10a­93 6 10 14 16 2 18 4 20 8 12 [2.2.2.2]
10110 10a­­100 6 10 16 20 14 2 18 4 8 12 [2.2.2.20]
10111 10a­98 6 10 16 14 2 18 8 20 4 12 [2.2.20.2]
10112 10a­76 6 8 10 14 16 18 20 2 4 12 [8*3]
10113 10a­36 4 10 14 12 2 16 18 20 8 6 [8*21]
10114 10a­77 6 8 10 14 16 20 18 2 4 12 [8*30]
10115 10a­94 6 10 14 16 4 18 2 20 12 8 [8*20.20]
Triquetra-heart-knot.svg
10116 10a­­120 6 16 18 14 2 4 20 8 10 12 [8*2:2]
10117 10a­99 6 10 16 14 18 4 20 2 12 8 [8*2:20]
10118 10a­88 6 8 18 14 16 4 20 2 10 12 [8*2:.2]
10119 10a­85 6 8 14 18 16 4 20 10 2 12 [8*2:.20]
Two-trefoils-on-loop doubly-interlinked 10crossings.svg
10120 10a­­102 6 10 18 12 4 16 20 8 2 14 [8*20::20]
10121 10a­90 6 10 12 20 18 16 8 2 4 14 [9*20]
10crossings-two-triquetras-joined.svg
10122 10a­89 6 10 12 14 18 16 20 2 4 8 [9*.20]
Floral fivefold knot green (geometry).svg
10123 10a­­121 8 10 12 14 16 18 20 2 4 6 [10*]
10124 10n­21 4 8 -14 2 -16 -18 -20 -6 -10 -12 [5,3,2-]
10125 10n­15 4 8 14 2 -16 -18 6 -20 -10 -12 [5,21,2-]
10126 10n­17 4 8 -14 2 -16 -18 -6 -20 -10 -12 [41,3,2-]
10127 10n­16 4 8 -14 2 16 18 -6 20 10 12 [41,21,2-]
10128 10n­22 4 8 -14 2 -16 -18 -20 -6 -12 -10 [32,3,2-]
10129 10n­18 4 8 14 2 -16 -18 6 -20 -12 -10 [32,21,-2]
10130 10n­20 4 8 -14 2 -16 -18 -6 -20 -12 -10 [311,3,2-]
10131 10n­19 4 8 -14 2 16 18 -6 20 12 10 [311,21,2-]
Knot-10-132-sm.png
10132 10n­13 4 8 -12 2 -16 -6 -20 -18 -10 -14 [23,3,2-]
10133 10n4 4 8 12 2 -14 -18 6 -20 -10 -16 [23,21,2-]
10134 10n6 4 8 -12 2 -14 -18 -6 -20 -10 -16 [221,3,2-]
10135 10n5 4 8 -12 2 14 18 -6 20 10 16 [221,21,2-]
10136 10n3 4 8 10 -14 2 -18 -6 -20 -12 -16 [22,22,2-]
10137 10n2 4 8 10 -14 2 -16 -18 -6 -20 -12 [22,211,2-]
10138 10n1 4 8 10 -14 2 16 18 -6 20 12 [211,211,2-]
10139 10n­27 4 10 -14 -16 2 -18 -20 -6 -8 -12 [4,3,3-]
10140 10n­29 4 10 -14 -16 2 18 20 -8 -6 12 [4,3,21-]
10141 10n­25 4 10 -14 -16 2 18 -8 -6 20 12 [4,21,21-]
10142 10n­30 4 10 -14 -16 2 -18 -20 -8 -6 -12 [31,3,3-]
10143 10n­26 4 10 -14 -16 2 -18 -8 -6 -20 -12 [31,3,21-]
10144 10n­28 4 10 14 16 2 -18 -20 8 6 -12 [31,21,21-]
10145 10n­14 4 8 -12 -18 2 -16 -20 -6 -10 -14 [22,3,3-]
10146 10n­23 4 8 -18 -12 2 -16 -20 -6 -10 -14 [22,21,21-]
10147 10n­24 4 10 -14 12 2 16 18 -20 8 -6 [211,3,21-]
10148 10n­12 4 8 -12 2 -16 -6 -18 -20 -10 -14 [(3,2)(3,2-)]
10149 10n­11 4 8 -12 2 16 -6 18 20 10 14 [(3,2)(21,2-)]
10150 10n9 4 8 -12 2 -16 -6 -18 -10 -20 -14 [(21,2)(3,2-)]
10151 10n8 4 8 -12 2 16 -6 18 10 20 14 [(21,2)(21,2-)]
10152 10n­36 6 8 12 2 -16 4 -18 -20 -10 -14 [(3,2)-(3,2)]
10153 10n­10 4 8 12 2 -16 6 -18 -20 -10 -14 [(3,2)-(21,2)]
10154 10n7 4 8 12 2 -16 6 -18 -10 -20 -14 [(21,2)-(21,2)]
10155 10n­39 6 10 14 16 18 4 -20 2 8 -12 [-3:2:2]
10156 10n­32 4 12 16 -14 18 2 -8 20 10 6 [-3:2:20]
10157 10n­42 6 -10 -18 14 -2 -16 20 8 -4 12 [-3:20:20]
10158 10n­41 6 -10 -16 14 -2 -18 8 20 -4 -12 [-30:2:2]
10159 10n­34 6 8 10 14 16 -18 -20 2 4 -12 [-30:2:20]
10160 10n­33 4 12 -16 -14 -18 2 -8 -20 -10 -6 [-30:20:20]
10-161 knot (Perko 1).svg
10161[a] 10n­31 4 12 -16 14 -18 2 8 -20 -10 -6 [3:-20:-20]
10162[b] 10n­40 6 10 14 18 16 4 -20 2 8 -12 [-30:-20:-20]
10163[c] 10n­35 6 8 10 14 16 -20 -18 2 4 -12 [8*-30]
10164[d] 10n­38 6 -10 -12 14 -18 -16 20 -2 -4 -8 [8*2:-20]
10165[e] 10n­37 6 8 14 18 16 4 -20 10 2 -12 [8*2:.-20]

Higher

 Kinoshita–Terasaka & Conway knots
Kinoshita–Terasaka & Conway knots

Table of prime links

Seven or fewer crossings

Name Picture Alexander-
Briggs
-
Rolfsen
Dowker-

Thistlethwaite

Dowker notation Conway
notation
Unlink
Unlink.png
02
1
Hopf link
Hopf Link.png
22
1
L2a1 [2]
Solomon's
knot
Solomons-knot-square.svg
42
1
L4a1 [4]
Whitehead
link
Whiteheadlink.png
52
1
L5a1 [212]
L6a1 62
3
L6a1
L6a2 62
2
L6a2
L6a3 62
1
L6a3
Borromean
rings
Borromean Rings Illusion.png
63
2
L6a4 [.1]
L6a5 63
1
L6a5
Valknut
Valknut-Symbol-3linkchain-closed.svg
63
3
L6n1
L7a1 72
6
L7a1
L7a2 72
5
L7a2
L7a3 72
4
L7a3
L7a4 72
3
L7a4
L7a5 72
2
L7a5
L7a6 72
1
L7a6
L7a7 73
1
L7a7
L7n1 72
7
L7n1
L7n2 72
8
L7n2 (6,-8|-10,12,-14,2,-4)

Higher

 (36,3)-torus link
(36,3)-torus link
Picture Alexander-
Briggs-
Rolfsen
Dowker-
Thistlethwaite
Dowker notation Conway
notation
3D-Link.PNG
82
1
L8a14
Brunnian-L10a140.svg
L10a140 [.3:30]

Notes

  1. ^ Originally listed as both 10161 and 10162 in the Rolfsen table. The error was discovered by Kenneth Perko (see Perko pair).
  2. ^ Listed as 10163 in the Rolfsen table.
  3. ^ Listed as 10164 in the Rolfsen table.
  4. ^ Listed as 10165 in the Rolfsen table.
  5. ^ Listed as 10166 in the Rolfsen table.

See also

External links

This page was last edited on 19 November 2017, at 23:54.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.