To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Stick number

2,3 torus (or trefoil) knot has a stick number of six. q = 3 and 2 × 3 = 6.

In the mathematical theory of knots, the stick number is a knot invariant that intuitively gives the smallest number of straight "sticks" stuck end to end needed to form a knot. Specifically, given any knot K, the stick number of K, denoted by stick(K), is the smallest number of edges of a polygonal path equivalent to K.

• 1/1
Views:
14 708
• 10 Things You Didn't Know About Lollipops

## Known values

Six is the lowest stick number for any nontrivial knot. There are few knots whose stick number can be determined exactly. Gyo Taek Jin determined the stick number of a (pq)-torus knot T(pq) in case the parameters p and q are not too far from each other (Jin 1997):

${\displaystyle {\text{stick}}(T(p,q))=2q{\text{, if }}2\leq p

The same result was found independently around the same time by a research group around Colin Adams, but for a smaller range of parameters (Adams et al. 1997).

## Bounds

Square knot = trefoil + trefoil reflection.
Figure-eight knot, stick number 7

The stick number of a knot sum can be upper bounded by the stick numbers of the summands (Adams et al. 1997, Jin 1997):

${\displaystyle {\text{stick}}(K_{1}\#K_{2})\leq {\text{stick}}(K_{1})+{\text{stick}}(K_{2})-3\,}$

## Related invariants

The stick number of a knot K is related to its crossing number c(K) by the following inequalities (Negami 1991, Calvo 2001, Huh & Oh 2011):

${\displaystyle {\frac {1}{2}}(7+{\sqrt {8\,{\text{c}}(K)+1}})\leq {\text{stick}}(K)\leq {\frac {3}{2}}(c(K)+1).}$

These inequalities are both tight for the trefoil knot, which has a crossing number of 3 and a stick number of 6.