To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Mathematical Reviews

From Wikipedia, the free encyclopedia

Mathematical Reviews
Publication details
Standard abbreviations
ISO 4Math. Rev.
OCLC no.1756873

Mathematical Reviews is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science.[1][2] The AMS also publishes an associated online bibliographic database called MathSciNet, which contains an electronic version of Mathematical Reviews.

YouTube Encyclopedic

  • 1/3
    19 653
    340 857
    1 015
  • An Introduction to Mathematical Reviews
  • College Entrance Exam Math Reviewer Part 1 (UPCAT, PUPCET, USTET, ACET, DCAT, etc.)
  • An Introduction to Mathematical Reviews



Mathematical Reviews was founded by Otto E. Neugebauer in 1940[3] as an alternative to the German journal Zentralblatt für Mathematik,[4] which Neugebauer had also founded a decade earlier, but which under the Nazis had begun censoring reviews by and of Jewish mathematicians.[3] The goal of the new journal was to give reviews of every mathematical research publication. As of November 2007, the Mathematical Reviews database contained information on over 2.2 million articles. The authors of reviews are volunteers, usually chosen by the editors because of some expertise in the area of the article. It and Zentralblatt für Mathematik are the only comprehensive resources of this type. (The Mathematics section of Referativny Zhurnal is available only in Russian and is smaller in scale and difficult to access.) Often reviews give detailed summaries of the contents of the paper, sometimes with critical comments by the reviewer and references to related work. However, reviewers are not encouraged to criticize the paper, because the author does not have an opportunity to respond. The author's summary may be quoted when it is not possible to give an independent review, or when the summary is deemed adequate by the reviewer or the editors. Only bibliographic information may be given when a work is in an unusual language, when it is a brief paper in a conference volume, or when it is outside the primary scope of the Reviews. Originally the reviews were written in several languages, but later an "English only" policy was introduced. Selected reviews (called "featured reviews") were also published as a book by the AMS, but this program has been discontinued.

Online database

Mathematical Reviews
ProducerAmerican Mathematical Society

In 1980, all the contents of Mathematical Reviews since 1940 were integrated into an electronic searchable database. Eventually the contents became part of MathSciNet, which was officially launched in 1996.[2] MathSciNet also has extensive citation information.[5]

Mathematical citation quotient

Mathematical Reviews computes a mathematical citation quotient (MCQ) for each journal. Like the impact factor and other similar citation rates, this is a numerical statistic that measures the frequency of citations to a journal.[6] The MCQ is calculated by counting the total number of citations into the journal that have been indexed by Mathematical Reviews over a five-year period, and dividing this total by the total number of papers published by the journal during that five-year period.

For the period 2012 – 2014, the top five journals in Mathematical Reviews by MCQ were:[7]

  1. Acta Numerica — MCQ 8.14
  2. Publications Mathématiques de l'IHÉS — MCQ 5.06
  3. Journal of the American Mathematical Society — MCQ 4.79
  4. Annals of Mathematics — MCQ 4.60
  5. Forum of Mathematics, Pi — MCQ 4.54

The "All Journal MCQ" is computed by considering all the journals indexed by Mathematical Reviews as a single meta-journal, which makes it possible to determine if a particular journal has a higher or lower MCQ than average. The 2018 All Journal MCQ is 0.41.

Current Mathematical Publications

Current Mathematical Publications was a subject index in print format that published the newest and upcoming mathematical literature, chosen and indexed by Mathematical Reviews editors. It covered the period from 1965 until 2012, when it was discontinued.[8]

See also


  1. ^ Fowler, Kristine K (January 2000). "Mathematics Sites Compared:Zentralblatt MATH Database and MathSciNet" (PDF). The Charleston Advisor. 1 (3): 18(1) to 18(11). ISSN 1525-4011. Retrieved 30 August 2014.
  2. ^ a b Dominy, Margaret; Bhatt, Jay (2001), "MathSciNet: Mathematical Reviews on the Web, a Review", Issues in Science and Technology Librarianship (Summer 2001), doi:10.29173/istl1862, S2CID 250571609
  3. ^ a b Jackson, Allyn (1997), "Chinese Acrobatics, an Old-Time Brewery, and the "Much Needed Gap": The life of Mathematical Reviews" (PDF), Notices of the American Mathematical Society, 44 (3): 330–7
  4. ^ Lehmer, D.H. (1988), "A half century of reviewing" (PDF), in Duren, Peter (ed.), A Century of Mathematics in America, Part I, American Mathematical Society, pp. 265–6, ISBN 0-8218-0124-4
  5. ^ Mathematical Reviews database
  6. ^ "Citation Database Help Topics", Mathematical Reviews. Accessed 2011-1-13
  7. ^ "Top Journal MCQs cited in the MR Citation Database", MathSciNet, accessed 2019-10-22
  8. ^ Current Mathematical Publications (2013). "Mathematical Reviews Database Publication Formats". American Mathematical Society.

External links

This page was last edited on 7 June 2024, at 07:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.