To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Amadori rearrangement

From Wikipedia, the free encyclopedia

The Amadori rearrangement is an organic reaction describing the acid or base catalyzed isomerization or rearrangement reaction of the N-glycoside of an aldose or the glycosylamine to the corresponding 1-amino-1-deoxy-ketose.[1] The reaction is important in carbohydrate chemistry, specifically the glycation of hemoglobin (as measured by the HbA1c test).[2]

The rearrangement is usually preceded by formation of a α-hydroxyimine by condensation of an amine with an aldose sugar. The rearrangement itself entails intramolecular redox reaction, converting this α-hydroxyimine to an α-ketoamine:

The formation of imines is generally reversible, but subsequent to conversion to the keto-amine, the attached amine is fixed irreversibly. This Amadori product is an intermediate in the production of advanced glycation end-products (AGE)s. The formation of an advanced glycation end-product involves the oxidation of the Amadori product.

YouTube Encyclopedic

  • 1/5
    Views:
    1 647
    21 817
    430
    114 418
    77 813
  • Osazone Formation | Amadori Rearrangement | Weygand Mechanism
  • Osazone formation mechanism
  • How to say Amadori rearrangement in German?
  • What is the Maillard Reaction - Food Science
  • Osazone Formation test|Kiliani fischer synthesis|Ruff Degradation|Chain Shortening Elongation

Transcription

Food chemistry

The reaction is associated with the amino-carbonyl reactions (also called glycation reaction, or Maillard reaction)[3] in which the reagents are naturally occurring sugars and amino acids. One study demonstrated the possibility of Amadori rearrangement during interaction between oxidized dextran and gelatine.[4]

History

The Amadori rearrangement was discovered by the organic chemist Mario Amadori (1886–1941), who in 1925 reported this reaction while studying the Maillard reaction.[5][6]

See also

References

  1. ^ Strategic Applications of Named Reactions in Organic Synthesis (Paperback) by Laszlo Kurti, BN 0-12-429785-4
  2. ^ Koenig, R. J.; Cerami, A. (1980). "Hemoglobin A Ic and diabetes mellitus". Annual Review of Medicine. 31: 29–34. doi:10.1146/annurev.me.31.020180.000333. PMID 6994614.
  3. ^ This vo Kientza, Hervé. "IMARS Highligh". www.imarsonline.com/.
  4. ^ Berillo, Dmitriy; Natalia Volkova (2014). "Preparation and physicochemical characteristics of cryogel based on gelatin and oxidised dextran". Journal of Materials Science. 49 (14): 4855–4868. Bibcode:2014JMatS..49.4855B. doi:10.1007/s10853-014-8186-3. S2CID 96843083.
  5. ^ M. Amadori, Atti. reale accad. nazl. Lincei, [6] 2, 337 (1925); [6] 9, 68, 226 (1929); [6] 13, 72 (1931)
  6. ^ Strategic Applications of Named Reactions in Organic Synthesis (Paperback) by Laszlo Kurti, BN 0-12-429785-4

External links

This page was last edited on 19 November 2023, at 13:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.