To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Barbier reaction

From Wikipedia, the free encyclopedia

Barbier reaction
Named after Philippe Barbier
Reaction type Coupling reaction
Reaction
R-X
+
Carbonyl group
+
Metal
Primary, secondary or tertiary alcohol
Identifiers
RSC ontology ID RXNO:0000084
Barbier reaction with samarium(II) iodide

The Barbier reaction is an organometallic reaction between an alkyl halide (chloride, bromide, iodide), a carbonyl group and a metal. The reaction can be performed using magnesium, aluminium, zinc, indium, tin, samarium, barium or their salts. The reaction product is a primary, secondary or tertiary alcohol. The reaction is similar to the Grignard reaction but the crucial difference is that the organometallic species in the Barbier reaction is generated in situ, whereas a Grignard reagent is prepared separately before addition of the carbonyl compound.[1] Unlike many Grignard reagents, the organometallic species generated in a Barbier reaction are unstable and thus cannot be stored or sold commercially. Barbier reactions are nucleophilic addition reactions that involve relatively inexpensive, water insensitive metals (e.g zinc powder) or metal compounds. For this reason, it is possible in many cases to run the reaction in water, making the procedure part of green chemistry. In contrast, Grignard reagents and organolithium reagents are highly moisture sensitive and must be used under an inert atmosphere without the presence of water. The Barbier reaction is named after Philippe Barbier, who was Victor Grignard's teacher.

YouTube Encyclopedic

  • 1/5
    Views:
    1 368
    2 395
    454
    440
    1 126
  • Barbier Reaction
  • Barbier Reaction Detailed Mechanism || Organic Named Reaction || Chemistry Portal ||
  • Organic Chemistry Lab - Barbier Reaction
  • Lecture 13 I Barbier - Wieland Degradation I Name Reactions I Organic Chemistry
  • Barbier-Wieland Degradation II Carboxylic Acid II Organic ChemistryII#NameReaction#alkaranichemistry

Transcription

Scope

Examples of Barbier reactions are the reaction of propargylic bromide with butanal with zinc metal (The attached reference details that the reaction goes to completion after the addition of saturated aqueous ammonium chloride):[2]

Barbier reaction
Barbier reaction
With a substituted alkyne instead of a terminal alkyne the allene product is favoured

the intramolecular Barbier reaction with samarium(II) iodide:[3]

Barbier reaction
Barbier reaction

the reaction of an allyl bromide with formaldehyde in THF with indium powder:[4]

Barbier reaction
Barbier reaction
The Barbier reaction is accompanied by an allylic rearrangement to a terminal alkene

The reaction of 3-Bromocyclohexene with benzaldehyde and zinc powder in water:[5]

Barbier reaction
Barbier reaction
The observed diastereoselectivity for this reaction is erythro : threo = 83 : 17

Asymmetric variants

The synthesis of (+)-aspicillin, starts first with a hydroboration, then transmetallation to zinc which can then do an addition into the aldehyde substituent.[6]

The total synthesis of (+)-aspicillin involves a Barbier reaction
The total synthesis of (+)-aspicillin involves a Barbier reaction

See also

External links

  • Barbier reaction @ University of Connecticut Website

References

  1. ^ Barbier, P. (1899). "Synthèse du diéthylhepténol". Compt. Rend. 128: 110.
  2. ^ Artur Jõgi & Uno Mäeorg (2001). "Zn Mediated Regioselective Barbier Reaction of Propargylic Bromides in THF/aq. NH4Cl Solution". Molecules. 6 (12): 964–968. doi:10.3390/61200964. PMC 6236518.
  3. ^ Tore Skjæret & Tore Benneche (2001). "Preparation of oxo-substituted α-chloro ethers and their reaction with samarium diiodide". Arkivoc: KU–242A.
  4. ^ George D. Bennett and Leo A. Paquette. "Methyl 3-(hydroxymethyl)-4-methyl-2-methylenepentanoate". Organic Syntheses.; Collective Volume, vol. 10, p. 77
  5. ^ Gary W. Breton; John H. Shugart; Christine A. Hughey; Brian P. Conrad; Suzanne M. Perala (2001). "Use of Cyclic Allylic Bromides in the Zinc–Mediated Aqueous Barbier–Grignard Reaction". Molecules. 6 (8): 655–662. doi:10.3390/60800655. PMC 6236354.
  6. ^ Oppolzer, Wolfgang; Radinov, Rumen N.; Brabander, Jef De (1995). "Total synthesis of the macrolide (+)-aspicilin by an asymmetrically catalyzed macrocyclization of an ω-Alkynal ester". Tetrahedron Letters. 36 (15): 2607–2610. doi:10.1016/0040-4039(95)00351-C.
This page was last edited on 4 January 2024, at 15:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.