To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In organic chemistry, methylenation is a chemical reaction that inserts a methylene (−CH2) group into a chemical compound:

In a related sense, it also describes a process in which a divalent group of a starting material is removed and replaced with a terminal CH2 group:

Methylenation in this context is also known as methenylation. Most commonly, E is an oxygen atom, so that the reaction results in terminal alkenes from aldehydes and ketones, or more rarely, enol ethers from esters or enamines from amides.

YouTube Encyclopedic

  • 1/3
    Views:
    139 938
    157 202
    37 690
  • DNA Methylation
  • DNA Methylation and Cancer - Garvan Institute
  • Methylation-specific PCR

Transcription

Methods

Methylene Insertion into Alkanes

Singlet methylene (1[:CH2]), produced from photolysis of diazomethane under ultraviolet irradiation,[1] methylenates hydrocarbons. Arenes and olefins undergo methylenation to give cyclopropanated products. In the case of arenes, the cyclopropanation product undergoes further electrocyclic ring opening to give cycloheptatriene products (Buchner ring expansion).[2] Alkenes undergo both C=C methylenation and C–H methylenation insertion to give a mixture of cyclopropanation and homologation products.

Reflecting the exceptionally high reactivity of singlet methylene, normally unreactive alkanes undergo methylenation to give homologation products, even at –75 °C.[3]

Photolysis of a solution of diazomethane in n-pentane gives a mixture of hexanes and higher homologues. At –75 °C, the product ratio is 48:35:17 mixture of n-hexane, 2-methylpentane, and 3-methylpentane. The ratio is remarkably close to the statistical product ratio of 6:4:2 (~50:33:17) based on the number of available C–H bonds at each position that could undergo methylene insertion. As a result, Doering and coworkers concluded:

Methylene must be classed as the most indiscriminate reagent known in organic chemistry.

Methylene-for-oxo reactions

A common method for methylenation involves the Wittig reaction using methylenetriphenylphosphorane with an aldehyde (Ph = phenyl, C6H5):[4]

A related reaction can be accomplished with Tebbe's reagent, which is sufficiently versatile to allow methylenation of esters:[5]

Other less well-defined titanium reagents, e.g., Lombardo's reagent, effect similar transformations.[6][7]

Carbanions derived from methylsulfones have also been employed, equivalently to the Wittig reaction.[8]

Methylenation adjacent to carbonyl groups

Ketones and esters can be methylenated at the α position to give α,β-unsaturated carbonyl products containing an additional terminal CH2 group in a three-step process known as the Eschenmoser methylenation.[9] An enolate is generated by deprotonation of the α-C–H bond using a hindered lithium amide (LiNR2) base (e.g., LDA, LHMDS). Subsequently, the enolate is reacted with Eschenmoser's salt ([Me2N=CH2]+I) to give a β-dimethylamino carbonyl compound (Mannich base). The Mannich base is then subjected to methylation or N-oxidation to give a trimethylammonium salt or amine N-oxide, which is then subjected to Hofmann elimination or Cope elimination, respectively to give the α-methylene carbonyl compound. If the Hofmann elimination is used, the process can be represented as follows:

Other approaches

Ethenolysis is a method for methylenation of internal alkene as illustrated by the following example:

In principle, the addition of CH2 across a C=C double bond could be classified as a methylenation, but such transformations are commonly described as cyclopropanations.

References

  1. ^ Braun, W.; Bass, Arnold M.; Pilling, M. (1970-05-15). "Flash Photolysis of Ketene and Diazomethane: The Production and Reaction Kinetics of Triplet and Singlet Methylene". The Journal of Chemical Physics. 52 (10): 5131–5143. doi:10.1063/1.1672751. ISSN 0021-9606.
  2. ^ Winberg, H (1959). "Notes- Synthesis of Cycloheptatriene". The Journal of Organic Chemistry. 24 (2): 264–265. doi:10.1021/jo01084a635. ISSN 0022-3263.
  3. ^ von E. Doering, W.; Buttery, R. G.; Laughlin, R. G.; Chaudhuri, N. (1956). "INDISCRIMINATE REACTION OF METHYLENE WITH THE CARBON-HYDROGEN BOND". Journal of the American Chemical Society. 78 (13): 3224–3224. doi:10.1021/ja01594a071. ISSN 0002-7863.
  4. ^ Eric J. Leopold (1986). "Selective Hydroboration of a 1,3,7-Triene: Homogeraniol". Organic Syntheses. 64: 164. doi:10.15227/orgsyn.064.0164.
  5. ^ Straus, Daniel A.; Morshed, M. Monzur; Dudley, Matthew E.; Hossain, M. Mahmun (2006). "μ-Chlorobis(cyclopentadienyl)(dimethylaluminium)-μ-methylenetitanium". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc073.pub2. ISBN 0471936235.
  6. ^ Luciano Lombardo (1987). "Methylenation of Carbonyl Compounds: (+)-3-Methylene-cis-p-menthane". Organic Syntheses. 65: 81. doi:10.15227/orgsyn.065.0081.
  7. ^ Marsden, Stephen P; Ducept, Pascal C (2005). "Synthesis of highly substituted allenylsilanes by alkylidenation of silylketenes". Beilstein Journal of Organic Chemistry. 1 (1): 5. doi:10.1186/1860-5397-1-5. PMC 1399453. PMID 16542018.
  8. ^ Ando, Kaori; Oguchi, Mai; Kobayashi, Takahisa; Asano, Haruka; Uchida, Nariaki (2020). "Methylenation for Aldehydes and Ketones Using 1-Methylbenzimidazol-2-yl Methyl Sulfone". The Journal of Organic Chemistry. 85 (15): 9936–9943. doi:10.1021/acs.joc.0c01227. PMID 32608238.
  9. ^ Schreiber, Jakob; Maag, Hans; Hashimoto, Naoto; Eschenmoser, Albert (1971). "Dimethyl(methylene)ammonium Iodide". Angewandte Chemie International Edition in English. 10 (5): 330–331. doi:10.1002/anie.197103301. ISSN 0570-0833.
This page was last edited on 13 April 2024, at 07:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.