To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

238 (two hundred [and] thirty-eight) is the natural number following 237 and preceding 239.

238 is an untouchable number.[1] There are 238 2-vertex-connected graphs on five labeled vertices,[2] and 238 order-5 polydiamonds (polyiamonds that can partitioned into 5 diamonds).[3] Among the 720 permutations of six elements, exactly 238 of them have a unique longest increasing subsequence.[4]

YouTube Encyclopedic

  • 1/1
    Views:
    2 739
  • ✪ American University of Sharjah Commencement | Spring 2016

Transcription

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers: impossible values for sum of aliquot parts of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A013922 (Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A056844 (Number of polydiamonds: polyominoes made from n diamonds)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A167995 (Total number of permutations on {1,2,...,n} that have a unique longest increasing subsequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
This page was last edited on 4 September 2019, at 09:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.