To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

222 (two hundred [and] twenty-two) is the natural number following 221 and preceding 223.

It is a decimal repdigit[1] and a strobogrammatic number (meaning that it looks the same turned upside down on a calculator display).[2] It is one of the numbers whose digit sum in decimal is the same as it is in binary.[3]

222 is a noncototient, meaning that it cannot be written in the form n − φ(n) where φ is Euler's totient function counting the number of values that are smaller than n and relatively prime to it.[4]

There are exactly 222 distinct ways of assigning a meet and join operation to a set of ten unlabeled elements in order to give them the structure of a lattice,[5] and exactly 222 different six-edge polysticks.[6]

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A010785 (Repdigit numbers, or numbers with repeated digits)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A018846 (Strobogrammatic numbers: numbers that are the same upside down (using calculator-style numerals))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A037308 (Numbers n such that (sum of base 2 digits of n) = (sum of base 10 digits of n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients: n such that x-phi(x) = n has no solution)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A006966 (Number of lattices on n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A019988 (Number of ways of embedding a connected graph with n edges in the square lattice)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
This page was last edited on 28 October 2018, at 14:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.