To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

k-vertex-connected graph

From Wikipedia, the free encyclopedia

A graph with connectivity 4.

In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed.

The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.

YouTube Encyclopedic

  • 1/3
    Views:
    30 234
    41 114
    758
  • Vertex Connectivity of a Graph | Connectivity, K-connected Graphs, Graph Theory
  • 2.9.4 k-Connectivity: Video
  • Graph Connectivity | K-connected graph | Vertex/Edge cut | Graph theory

Transcription

Definitions

A graph (other than a complete graph) has connectivity k if k is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them.[1] In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph is .[2]

An equivalent definition is that a graph with at least two vertices is k-connected if, for every pair of its vertices, it is possible to find k vertex-independent paths connecting these vertices; see Menger's theorem (Diestel 2005, p. 55). This definition produces the same answer, n − 1, for the connectivity of the complete graph Kn.[1] Clearly the complete graph with n vertices has connectivity n − 1 under this definition.

A 1-connected graph is called connected; a 2-connected graph is called biconnected. A 3-connected graph is called triconnected.

Applications

Components

Every graph decomposes into a tree of 1-connected components. 1-connected graphs decompose into a tree of biconnected components. 2-connected graphs decompose into a tree of triconnected components.

Polyhedral combinatorics

The 1-skeleton of any k-dimensional convex polytope forms a k-vertex-connected graph (Balinski's theorem).[3] As a partial converse, Steinitz's theorem states that any 3-vertex-connected planar graph forms the skeleton of a convex polyhedron.

Computational complexity

The vertex-connectivity of an input graph G can be computed in polynomial time in the following way[4] consider all possible pairs of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the number of pairwise edge-independent paths, and compute the maximum number of such paths by computing the maximum flow in the graph between and with capacity 1 to each edge, noting that a flow of in this graph corresponds, by the integral flow theorem, to pairwise edge-independent paths from to .

See also

Notes

  1. ^ a b Schrijver (12 February 2003), Combinatorial Optimization, Springer, ISBN 9783540443896
  2. ^ Beineke, Lowell W.; Bagga, Jay S. (2021), Line Graphs and Line Digraphs, Developments in Mathematics, vol. 68, Springer Nature, p. 87, ISBN 9783030813864
  3. ^ Balinski, M. L. (1961), "On the graph structure of convex polyhedra in n-space", Pacific Journal of Mathematics, 11 (2): 431–434, doi:10.2140/pjm.1961.11.431.
  4. ^ The algorithm design manual, p 506, and Computational discrete mathematics: combinatorics and graph theory with Mathematica, p. 290-291

References

This page was last edited on 2 April 2024, at 00:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.