To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# 260 (number)

260 (two hundred [and] sixty) is the natural number following 259 and preceding 261.

 ← 259 260 261 →
Cardinaltwo hundred sixty
Ordinal260th
(two hundred sixtieth)
Factorization22× 5 × 13
Greek numeralΣΞ´
Roman numeralCCLX
Binary1000001002
Ternary1001223
Quaternary100104
Quinary20205
Senary11126
Octal4048
Duodecimal19812
VigesimalD020
Base 367836

It is also the magic constant of the n×n normal magic square and n-queens problem for n = 8, the size of an actual chess board.

260 is also the magic constant of the Franklin magic square devised by Benjamin Franklin.

 52 61 4 13 20 29 36 45 14 3 62 51 46 35 30 19 53 60 5 12 21 28 37 44 11 6 59 54 43 38 27 22 55 58 7 10 23 26 39 42 9 8 57 56 41 40 25 24 50 63 2 15 18 31 34 47 16 1 64 49 48 33 32 17

The minor diagonal gives 260, and in addition a number of combinations of two half diagonals of four numbers from a corner to the center give 260.

260 are the days in Mayan sacred calendar Tzolkin.

260 may also refer to the years AD 260 and 260 BC.

## Integers from 261 to 269

### 261

261 = 32·29, lucky number, nonagonal number, Harshad number, unique period in base 2, number of possible unfolded tesseract patterns. 261 was once the lowest number not to have its own Wikipedia page, this making it a candidate for the lowest "uninteresting number" according to the definition given by Alex Bellos.[1]

### 263

263 is a prime, safe prime, happy number, sum of five consecutive primes (43 + 47 + 53 + 59 + 61), balanced prime, Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number, Bernoulli irregular prime, Euler irregular prime, Gaussian prime, full reptend prime, Solinas prime, Ramanujan prime.

### 264

264 = 23·3·11, Harshad number. If you take the sum of all 2-digit numbers you can make from 264, you get 264: 24 + 42 + 26 + 62 + 46 + 64 = 264. 132 and 396 share this property.[2]

264 equals the sum of the squares of the digits of its own square in base 15. This property is shared with 1, 159, 284, 306 and 387.

### 265

265 = 5·53, semiprime, lucky number, Padovan number, number of derangements of 6 elements, centered square number, Smith number, subfactorial 6.

### 266

266 = 2·7·19, sphenic number, Harshad number, nontotient, noncototient, self number, repdigit in base 11 (222). 266 is also the index of the largest proper subgroups of the sporadic group known as the Janko group J1.

### 267

267 = 3·89, semiprime, the number of groups of order 64.[3]

• 267 is also the area code for Pennsylvania, USA (Philadelphia area including its suburbs in eastern Montgomery County and most of Bucks County, overlays with 215)

### 268

268 = 22·67, noncototient, untouchable number

### 269

269 is a prime, twin prime with 271, sum of three consecutive primes (83 + 89 + 97), Chen prime, Eisenstein prime with no imaginary part, highly cototient number, strictly non-palindromic number, full reptend prime

## References

1. ^ Bellos, Alex (June 2014). The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life. illus. The Surreal McCoy (1st Simon & Schuster hardcover ed.). N.Y.: Simon & Schuster. pp. 238 & 319 (quoting p. 319). ISBN 978-1-4516-4009-0.
2. ^ Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 138
3. ^ Number of groups of order n
This page was last edited on 29 June 2019, at 00:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.