To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

121 (one hundred [and] twenty-one) is the natural number following 120 and preceding 122.

In mathematics

One hundred [and] twenty-one is a square and is the sum of three consecutive primes (37 + 41 + 43). There are no squares besides 121 known to be of the form , where p is prime (3, in this case). Other such squares must have at least 35 digits.

There are only two other squares known to be of the form n! + 1, supporting Brocard's conjecture. Another example of 121 being of the few examples supporting a conjecture is that Fermat conjectured that 4 and 121 are the only perfect squares of the form x3 - 4 (with x being 2 and 5, respectively).[1]

It is also a star number and a centered octagonal number.

A Chinese checkers board has 121 holes
A Chinese checkers board has 121 holes

In base 10, it is a Smith number since its digits add up to the same value as its factorization (which uses the same digits) and as a consequence of that it is a Friedman number (11^2). But it can not be expressed as the sum of any other number plus that number's digits, making 121 a self number.

In other fields

121 is also:

See also


  1. ^ Wells, D., The Penguin Dictionary of Curious and Interesting Numbers, London: Penguin Group. (1987): 136
  2. ^ Vodafone, Calling and messaging
  3. ^ Rule 1.1, American Cribbage Congress, retrieved 6 September 2011
This page was last edited on 29 January 2019, at 03:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.