To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

← 839  840  841 →
Cardinaleight hundred forty
Ordinal840th
(eight hundred fortieth)
Factorization23× 3 × 5 × 7
Divisors1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840
Greek numeralΩΜ´
Roman numeralDCCCXL
Binary11010010002
Ternary10110103
Quaternary310204
Quinary113305
Senary35206
Octal15108
Duodecimal5A012
Hexadecimal34816
Vigesimal22020
Base 36NC36

840 is the natural number following 839 and preceding 841.

It is a highly composite number,[1] a superabundant number,[2] an idoneal number,[3] and is the least common multiple of 1, 2, 3, 4, 5, 6, 7, 8.[4]

840 is the largest number k such that all coprime quadratic residues modulo k are squares. In this case, they are 1, 121, 169, 289, 361 and 529.[5]

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers, definition (1): where d(n), the number of divisors of n (A000005), increases to a record)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A004394 (Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m<n, sigma(n) being the sum of the divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A000926 (Euler's "numerus idoneus" (or "numeri idonei", or idoneal, or suitable, or convenient numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A003418 (Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A303704 (Numbers k such that all coprime quadratic residues modulo k are squares.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
This page was last edited on 30 April 2018, at 02:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.