Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Уравнение Ландау — Лифшица (магнетизм)

Из Википедии — свободной энциклопедии

Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Уравне́ние Ланда́у — Ли́фшица — уравнение, описывающее движение намагниченности в приближении континуальной модели в твердых телах. Впервые введено Л. Д. Ландау и Е. М. Лифшицем в 1935 году.

Формулировка

Для бездиссипативной среды и в отсутствие спин-поляризированного тока уравнение Ландау — Лифшица обычно записывается в виде

где  — плотность магнитного момента (намагниченность),  — некоторая феноменологическая постоянная,  — так называемое эффективное магнитное поле.

Уравнение в основном используется для ферро- и ферримагнетиков. В общем случае постоянная не совпадает с гиромагнитным отношением и в рамках феноменологической теории должна рассматриваться как величина, определяемая из эксперимента. Их отличие обусловлено вкладом орбитальных моментов. Поэтому при условии, что магнитные ионы находятся в -состоянии (то есть орбитальные моменты отсутствуют), можно считать равным гиромагнитному отношению с большой степенью точности[1]. Это выполняется для CdCr2Se4, железо-иттриевого граната Y3Fe5O12, пермаллоя Fe20+xNi80-x и большинства др. ферро- и ферримагнитных материалов.

Эффективное магнитное поле определяется как вариационная производная свободной энергии по магнитному моменту[2]

В случае, когда рассматривается магнетик вдали от температуры Кюри или при нулевой температуре, то свободная энергия равна внутренней .

В формулировке (1) сохраняется длина вектора намагниченности. Это легко показать, домножив обе части (1) скалярно на , что даст

Этот факт дает основание говорить о прецессии намагниченности.

Строгий вывод уравнения движения намагниченности в континуальном приближении невозможен[3], поэтому часто постулируется возможность формального перехода от уравнения движения оператора спина

к уравнению (1) путём замены и разложения поля намагниченности вблизи точки в ряд Тейлора[4]. Тут  — коммутатор,  — гамильтониан,  — оператор спина для n-го узла решетки, а  — его радиус-вектор,  — постоянная решетки,  — магнетон Бора.

Модификации

Учет диссипации, влияния температуры или спин-поляризированных токов требует модификации исходного уравнения (1), которая обычно сводится к появлению дополнительных слагаемых в правой части (1). Релаксационные члены могут иметь различную размерность и различное число параметров. Но для приближенного описания процессов в ферромагнетиках при небольшой диссипации может использоваться уравнение в любой из нижеприведенных форм[5]. Каждое из них можно преобразовать одно к другому.

Релаксационный член в форме Ландау — Лифшица

Ландау и Лифшиц предложили[6] следующую модификацию:

где  — параметр диссипации. Иногда за параметр диссипации принимают величину .

Уравнение Ландау — Лифшица — Гильберта

Часто используется релаксационный член в форме Гильберта:

где  — параметр диссипации. Формальный переход между уравнениями (5) и (6) можно совершить заменой

В связи с отрицательным значением гиромагнитного отношения встречаются определения параметров релаксации с противоположными знаками в (5) и (6)[7].

Уравнение Блоха — Бломергена

Примером уравнения с диссипацией, допускающего изменение длины вектора намагниченности может служить модифицированное уравнение Блоха или уравнение Блоха — Бломергена:

где  — так называемая статическая восприимчивость, определяемая как отношение намагниченности насыщения к абсолютной величине эффективного поля, а  — частота релаксации.

Влияние спин-поляризированного тока

Спин-поляризированный ток обычно описывают дополнительным слагаемым в правой части (1) вида . Один из подходов к его конкретизации[8] состоит в разложении вектора по осям, направленным вдоль , и . Тут  — единичный вектор вдоль намагниченности опорного слоя. В предположении, что длина вектора намагниченности не меняется, первая проекция будет равна нулю, а две другие

где коэффциценты и пропорциональны плотности тока, зависящие от параметров поляризирующей структуры и угла между и .

Другие формы записи

Для аналитического анализа, чаще всего уравнение Ландау — Лифшица записывается в угловых переменных сферической системы координат и . В таком случае вектор намагничености можно представить как

где  — намагниченность насыщения. Чтобы перейти в (6) к угловым переменным, домножим уравнение на вариацию намагниченности , выразив в угловых переменных проекцию левой части на ось аппликат. Далее, записав вариации энергии и намагниченности через вариации углов получим

Получение уравнений в угловых переменных содержащих дополнительные члены проделывается аналогично. Так для записи в форме Ландау — Лифшица — Гильберта имеем

См. также

Примечания

  1. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Физматлит, 1994. — 464 с., — ISBN 5-02-014366-9 на стр. 17.
  2. Скроцкий, Г. В. Еще раз об уравнении Ландау — Лифшица. УФН Архивная копия от 30 апреля 2011 на Wayback Machine
  3. Подробнее, этот вопрос был рассмотрен, например, в Ахиезер А. И., Барьяхтар В. Г. Пелетминский С. В. Спиновые волны., М.: Наука, 1967, — 368 с. на стр. 44 и Herring C., Kittel C, On the theory of spin waves in ferromagnetic media. — Phys. Rev., 1951, 81 N. 5, p. 869—880.
  4. В этом случае обычно ограничиваются членами второго порядка малости, так как в случае, когда каждый узел решетки является её центром симметрии, содержащее первую производную по координате слагаемое обращается в нуль.
  5. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Физматлит, 1994. — 464 с., — ISBN 5-02-014366-9 на стр. 27.
  6. Ландау Л. Д., Лифшиц Е. М. К теории дисперсии магнитной проницаемости ферромагнитных тел // Ландау Л. Д. Собрание трудов в 2 т. Под ред. Е. М. Лифшица. М.: Наука, 1969. Т. 1. С. 128
  7. Hubert, Alex; Rudolf Schäfer. Magnetic domains: the analysis of magnetic microstructures (англ.). — Springer, 1998. — P. 557. — ISBN 3540641084. Архивировано 20 августа 2021 года. на стр. 151.
  8. Звездин А. К., и др. Обобщенное уравнение Ландау — Лифшица и процессы переноса спинового момента в магнитных наноструктурах. [УФН, 178, с. 436–442 (2008) [1] Архивная копия от 13 апреля 2010 на Wayback Machine

Литература

  • Ахиезер, А. И., Барьяхтар, В. Г. Пелетминский, С. В. Спиновые волны., М.: Наука, 1967, — 368 с.
  • Гуревич, А. Г., Мелков, Г. А. Магнитные колебания и волны. М.: Физматлит, 1994. — 464 с.,  ISBN 5-02-014366-9.
  • Зависляк, И. В., Тычинский, А. В., Физические основы функциональной микроэлектроники. К.: УМК ВО, 1989, — 105. с.
  • Звездин, А. К, Звездин, К. А, Хвальковский, А. В. Обобщенное уравнение Ландау — Лифшица и процессы переноса спинового момента в магнитных наноструктурах. УФН, 178 436–442, (2008) https://dx.doi.org/10.3367/UFNr.0178.200804i.0436
  • Ландау, Л. Д., Лифшиц, Е. М. К теории дисперсии магнитной проницаемости ферромагнитных тел. Phys. Zs. Sowjet., 1935, 8, С. 153-169.
  • Скроцкий, Г. В. Еще раз об уравнении Ландау — Лифшица. УФН
  • Gilbert, T. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 2004, 40, pp. 3443-3449. https://dx.doi.org/10.1109/TMAG.2004.836740
  • Hubert, Alex; Rudolf Schäfer. Magnetic domains: the analysis of magnetic microstructures (англ.). — Springer, 1998. — P. 557. — ISBN 3540641084.

Ссылки

Эта страница в последний раз была отредактирована 18 декабря 2023 в 03:02.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).