Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Параболическое уравнение

Из Википедии — свободной энциклопедии

Визуализация решения параболического уравнения (уравнения теплопроводности)
Визуализация решения параболического уравнения (уравнения теплопроводности)

Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.

Определение

Рассмотрим общий вид скалярного дифференциального уравнения в частных производных второго порядка относительно функции :

При этом уравнение записано в симметричном виде, то есть: . Тогда эквивалентное уравнение в виде квадратичной формы:

,

где .
Матрица называется матрицей главных коэффициентов.
Если сигнатура полученной формы равна , то есть матрица имеет одно собственное значение равное нулю и собственных значений имеют одинаковый знак, то уравнение относят к параболическому типу[1].
Другое, эквивалентное определение: уравнение называется параболическим, если оно представимо в виде:

,

где:  — эллиптический оператор, .

Решение параболических уравнений

Для нахождения единственного решения уравнение рассматривается в совокупности с начальными и краевыми условиями. Поскольку по времени уравнение имеет первый порядок, то начальное условие накладывается одно: на искомую функцию.

Принцип максимума

Для параболического уравнения вида:

Решение принимает своё максимальное значение либо при , либо на границе области .

Примеры параболических уравнений

См. также

Примечания

  1. Тихонов А.Н, Самарский А.А. Уравнения математической физики (5-е изд.).. — Москва: Наука, 1977.
  2. Л.К. Мартинсон, Ю.И. Малов. Дифференциальные уравнения математической физики. — Москва: МГТУ имени Н.Э. Баумана, 2002. — 368 с. — ISBN 5-7038-1270-4.
  3. Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.
Эта страница в последний раз была отредактирована 6 сентября 2021 в 11:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).