To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Refactorable number

From Wikipedia, the free encyclopedia

Demonstration, with Cuisenaire rods, that 1, 2, 8, 9, and 12 are refactorable

A refactorable number or tau number is an integer n that is divisible by the count of its divisors, or to put it algebraically, n is such that . The first few refactorable numbers are listed in (sequence A033950 in the OEIS) as

1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 225, 228, 232, 240, 248, 252, 276, 288, 296, ...

For example, 18 has 6 divisors (1 and 18, 2 and 9, 3 and 6) and is divisible by 6. There are infinitely many refactorable numbers.

YouTube Encyclopedic

  • 1/2
    Views:
    600
    314 059
  • GRCC Mathematics: The Number Tau
  • You Need To Know About This Number

Transcription

Properties

Cooper and Kennedy proved that refactorable numbers have natural density zero. Zelinsky proved that no three consecutive integers can all be refactorable.[1] Colton proved that no refactorable number is perfect. The equation has solutions only if is a refactorable number, where is the greatest common divisor function.

Let be the number of refactorable numbers which are at most . The problem of determining an asymptotic for is open. Spiro has proven that [2]

There are still unsolved problems regarding refactorable numbers. Colton asked if there are there arbitrarily large such that both and are refactorable. Zelinsky wondered if there exists a refactorable number , does there necessarily exist such that is refactorable and .

History

First defined by Curtis Cooper and Robert E. Kennedy[3] where they showed that the tau numbers have natural density zero, they were later rediscovered by Simon Colton using a computer program he had made which invents and judges definitions from a variety of areas of mathematics such as number theory and graph theory.[4] Colton called such numbers "refactorable". While computer programs had discovered proofs before, this discovery was one of the first times that a computer program had discovered a new or previously obscure idea. Colton proved many results about refactorable numbers, showing that there were infinitely many and proving a variety of congruence restrictions on their distribution. Colton was only later alerted that Kennedy and Cooper had previously investigated the topic.

See also

References

  1. ^ J. Zelinsky, "Tau Numbers: A Partial Proof of a Conjecture and Other Results," Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8
  2. ^ Spiro, Claudia (1985). "How often is the number of divisors of n a divisor of n?". Journal of Number Theory. 21 (1): 81–100. doi:10.1016/0022-314X(85)90012-5.
  3. ^ Cooper, C.N. and Kennedy, R. E. "Tau Numbers, Natural Density, and Hardy and Wright's Theorem 437." Internat. J. Math. Math. Sci. 13, 383-386, 1990
  4. ^ S. Colton, "Refactorable Numbers - A Machine Invention," Journal of Integer Sequences, Vol. 2 (1999), Article 99.1.2
This page was last edited on 27 June 2024, at 05:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.