To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Octagonal number

An octagonal number is a figurate number that represents an octagon. The octagonal number for n is given by the formula 3n2 - 2n, with n > 0. The first few octagonal numbers are:

1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936 (sequence A000567 in the OEIS)

Octagonal numbers can be formed by placing triangular numbers on the four sides of a square. To put it algebraically, the n-th octagonal number is

${\displaystyle x_{n}=n^{2}+4\sum _{k=1}^{n-1}k=3n^{2}-2n.}$

The octagonal number for n can also be calculated by adding the square of n to twice the (n - 1)th pronic number.

Octagonal numbers consistently alternate parity.

Octagonal numbers are occasionally referred to as "star numbers," though that term is more commonly used to refer to centered dodecagonal numbers.[1]

• 1/1
Views:
9 059
• Number system: Base concept

## Test for octagonal numbers

Solving the formula for the n-th octagonal number, ${\displaystyle x_{n},}$ for n gives

${\displaystyle n={\frac {{\sqrt {3x_{n}+1}}+1}{3}}.}$

An arbitrary number x can be checked for octagonality by putting it in this equation. If n is an integer, then x is the n-th octagonal number. If n is not an integer, then x is not octagonal.