To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nonhypotenuse number

From Wikipedia, the free encyclopedia

5 is not a nonhypotenuse number

In mathematics, a nonhypotenuse number is a natural number whose square cannot be written as the sum of two nonzero squares. The name stems from the fact that an edge of length equal to a nonhypotenuse number cannot form the hypotenuse of a right angle triangle with integer sides.

The numbers 1, 2, 3 and 4 are all nonhypotenuse numbers. The number 5, however, is not a nonhypotenuse number as 52 equals 32 + 42.

The first fifty nonhypotenuse numbers are:

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 62, 63, 64, 66, 67, 69, 71, 72, 76, 77, 79, 81, 83, 84 (sequence A004144 in the OEIS)

Although nonhypotenuse numbers are common among small integers, they become more-and-more sparse for larger numbers. Yet, there are infinitely many nonhypotenuse numbers, and the number of nonhypotenuse numbers not exceeding a value x scales asymptotically with x/log x.[1]

The nonhypotenuse numbers are those numbers that have no prime factors of the form 4k+1.[2] Equivalently, they are the number that cannot be expressed in the form where K, m, and n are all positive integers. A number whose prime factors are not all of the form 4k+1 cannot be the hypotenuse of a primitive integer right triangle (one for which the sides do not have a nontrivial common divisor), but may still be the hypotenuse of a non-primitive triangle.[3]

The nonhypotenuse numbers have been applied to prove the existence of addition chains that compute the first square numbers using only additions.[4]

See also

References

  1. ^ D. S.; Beiler, Albert H. (1968), "Albert Beiler, Consecutive Hypotenuses of Pythagorean Triangles", Mathematics of Computation, 22 (103): 690–692, doi:10.2307/2004563, JSTOR 2004563. This review of a manuscript of Beiler's (which was later published in J. Rec. Math. 7 (1974) 120–133, MR0422125) attributes this bound to Landau.
  2. ^ Shanks, D. (1975), "Non-hypotenuse numbers", Fibonacci Quarterly, 13 (4): 319–321, MR 0387219.
  3. ^ Beiler, Albert (1966), Recreations in the Theory of Numbers: The Queen of Mathematics Entertains (2 ed.), New York: Dover Publications, p. 116-117, ISBN 978-0-486-21096-4
  4. ^ Dobkin, David; Lipton, Richard J. (1980), "Addition chain methods for the evaluation of specific polynomials", SIAM Journal on Computing, 9 (1): 121–125, doi:10.1137/0209011, MR 0557832

External links

This page was last edited on 22 February 2023, at 01:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.