To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

A Giuga number is a composite number n such that for each of its distinct prime factors pi we have , or equivalently such that for each of its distinct prime factors pi we have .

The Giuga numbers are named after the mathematician Giuseppe Giuga, and relate to his conjecture on primality.


Alternative definition for a Giuga number due to Takashi Agoh is: a composite number n is a Giuga number if and only if the congruence

holds true, where B is a Bernoulli number and is Euler's totient function.

An equivalent formulation due to Giuseppe Giuga is: a composite number n is a Giuga number if and only if the congruence

and if and only if

All known Giuga numbers n in fact satisfy the stronger condition


The sequence of Giuga numbers begins

30, 858, 1722, 66198, 2214408306, … (sequence A007850 in the OEIS).

For example, 30 is a Giuga number since its prime factors are 2, 3 and 5, and we can verify that

  • 30/2 - 1 = 14, which is divisible by 2,
  • 30/3 - 1 = 9, which is 3 squared, and
  • 30/5 - 1 = 5, the third prime factor itself.


The prime factors of a Giuga number must be distinct. If divides , then it follows that , where is divisible by . Hence, would not be divisible by , and thus would not be a Giuga number.

Thus, only square-free integers can be Giuga numbers. For example, the factors of 60 are 2, 2, 3 and 5, and 60/2 - 1 = 29, which is not divisible by 2. Thus, 60 is not a Giuga number.

This rules out squares of primes, but semiprimes cannot be Giuga numbers either. For if , with primes, then , so will not divide , and thus is not a Giuga number.

Question, Web Fundamentals.svg Unsolved problem in mathematics:
Are there infinitely many Giuga numbers?
(more unsolved problems in mathematics)

All known Giuga numbers are even. If an odd Giuga number exists, it must be the product of at least 14 primes. It is not known if there are infinitely many Giuga numbers.

It has been conjectured by Paolo P. Lava (2009) that Giuga numbers are the solutions of the differential equation n' = n+1, where n' is the arithmetic derivative of n. (For square-free numbers , , so n' = n+1 is just the last equation in the above section Definitions, multiplied by n.)

José Mª Grau and Antonio Oller-Marcén have shown that an integer n is a Giuga number if and only if it satisfies n' = a n + 1 for some integer a > 0, where n' is the arithmetic derivative of n. (Again, n' = a n + 1 is identical to the third equation in Definitions, multiplied by n.)

See also


  • Weisstein, Eric W. "Giuga Number". MathWorld.
  • Borwein, D.; Borwein, J. M.; Borwein, P. B.; Girgensohn, R. (1996). "Giuga's Conjecture on Primality" (PDF). American Mathematical Monthly. 103 (1): 40–50. CiteSeerX doi:10.2307/2975213. JSTOR 2975213. Zbl 0860.11003. Archived from the original (PDF) on 2005-05-31.
  • Balzarotti, Giorgio; Lava, Paolo P. (2010). Centotre curiosità matematiche. Milan: Hoepli Editore. p. 129. ISBN 978-88-203-4556-3.
This page was last edited on 21 September 2019, at 12:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.