To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Leyland number

From Wikipedia, the free encyclopedia

In number theory, a Leyland number is a number of the form

where x and y are integers greater than 1.[1] They are named after the mathematician Paul Leyland. The first few Leyland numbers are

8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 (sequence A076980 in the OEIS).

The requirement that x and y both be greater than 1 is important, since without it every positive integer would be a Leyland number of the form x1 + 1x. Also, because of the commutative property of addition, the condition xy is usually added to avoid double-covering the set of Leyland numbers (so we have 1 < yx).

YouTube Encyclopedic

  • 1/1
  • ✪ Top 10 Worst INTERNET TROLLS Ever



Leyland primes

A Leyland prime is a Leyland number that is also a prime. The first such primes are:

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, ... (sequence A094133 in the OEIS)

corresponding to

32+23, 92+29, 152+215, 212+221, 332+233, 245+524, 563+356, 3215+1532.[2]

One can also fix the value of y and consider the sequence of x values that gives Leyland primes, for example x2 + 2x is prime for x = 3, 9, 15, 21, 33, 2007, 2127, 3759, ... (OEISA064539).

By November 2012, the largest Leyland number that had been proven to be prime was 51226753 + 67535122 with 25050 digits. From January 2011 to April 2011, it was the largest prime whose primality was proved by elliptic curve primality proving.[3] In December 2012, this was improved by proving the primality of the two numbers 311063 + 633110 (5596 digits) and 86562929 + 29298656 (30008 digits), the latter of which surpassed the previous record.[4] There are many larger known probable primes such as 3147389 + 9314738,[5] but it is hard to prove primality of large Leyland numbers. Paul Leyland writes on his website: "More recently still, it was realized that numbers of this form are ideal test cases for general purpose primality proving programs. They have a simple algebraic description but no obvious cyclotomic properties which special purpose algorithms can exploit."

There is a project called XYYXF to factor composite Leyland numbers.[6]

Leyland number of the second kind

A Leyland number of the second kind is a number of the form

where x and y are integers greater than 1.

A Leyland prime of the second kind is a Leyland number of the second kind that is also prime. The first few such primes are:

7, 17, 79, 431, 58049, 130783, 162287, 523927, 2486784401, 6102977801, 8375575711, 13055867207, 83695120256591, 375700268413577, 2251799813682647, ... (sequence A123206 in the OEIS)

For the probable primes, see Henri Lifchitz & Renaud Lifchitz, PRP Top Records search.[7]


  1. ^ Richard Crandall and Carl Pomerance (2005), Prime Numbers: A Computational Perspective, Springer
  2. ^ "Primes and Strong Pseudoprimes of the form xy + yx". Paul Leyland. Retrieved 2007-01-14.
  3. ^ "Elliptic Curve Primality Proof". Chris Caldwell. Retrieved 2011-04-03.
  4. ^ "Mihailescu's CIDE". 2012-12-11. Retrieved 2012-12-26.
  5. ^ Henri Lifchitz & Renaud Lifchitz, PRP Top Records search.
  6. ^ "Factorizations of xy + yx for 1 < y < x < 151". Andrey Kulsha. Retrieved 2008-06-24.
  7. ^ Henri Lifchitz & Renaud Lifchitz, PRP Top Records search

External links

This page was last edited on 4 June 2019, at 03:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.