To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Perfect totient number

From Wikipedia, the free encyclopedia

In number theory, a perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number. Or to put it algebraically, if

where

is the iterated totient function and c is the integer such that

then n is a perfect totient number.

The first few perfect totient numbers are

3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, ... (sequence A082897 in the OEIS).

For example, start with 327. Then φ(327) = 216, φ(216) = 72, φ(72) = 24, φ(24) = 8, φ(8) = 4, φ(4) = 2, φ(2) = 1, and 216 + 72 + 24 + 8 + 4 + 2 + 1 = 327.

YouTube Encyclopedic

  • 1/5
    Views:
    1 577
    5 121
    5 894
    50 745
    12 409
  • Euler's Totient number : Finding co-primes less than a given number (Hin+)
  • Perfect Numbers and Euler's Theorem
  • Mobius Function Example
  • Euler's Totient/Phi Function (step 4)
  • Euler's Totient Function

Transcription

Multiples and powers of three

It can be observed that many perfect totient are multiples of 3; in fact, 4375 is the smallest perfect totient number that is not divisible by 3. All powers of 3 are perfect totient numbers, as may be seen by induction using the fact that

Venkataraman (1975) found another family of perfect totient numbers: if p = 4×3k+1 is prime, then 3p is a perfect totient number. The values of k leading to perfect totient numbers in this way are

0, 1, 2, 3, 6, 14, 15, 39, 201, 249, 1005, 1254, 1635, ... (sequence A005537 in the OEIS).

More generally if p is a prime number greater than 3, and 3p is a perfect totient number, then p ≡ 1 (mod 4) (Mohan and Suryanarayana 1982). Not all p of this form lead to perfect totient numbers; for instance, 51 is not a perfect totient number. Iannucci et al. (2003) showed that if 9p is a perfect totient number then p is a prime of one of three specific forms listed in their paper. It is not known whether there are any perfect totient numbers of the form 3kp where p is prime and k > 3.

References

  • Pérez-Cacho Villaverde, Laureano (1939). "Sobre la suma de indicadores de ordenes sucesivos". Revista Matematica Hispano-Americana. 5 (3): 45–50.
  • Mohan, A. L.; Suryanarayana, D. (1982). "Perfect totient numbers". Number theory (Mysore, 1981). Lecture Notes in Mathematics, vol. 938, Springer-Verlag. pp. 101–105. MR 0665442.
  • Venkataraman, T. (1975). "Perfect totient number". The Mathematics Student. 43: 178. MR 0447089.

This article incorporates material from Perfect Totient Number on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This page was last edited on 19 November 2018, at 19:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.