To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Descartes number

From Wikipedia, the free encyclopedia

In number theory, a Descartes number is an odd number which would have been an odd perfect number if one of its composite factors were prime. They are named after René Descartes who observed that the number D = 32⋅72⋅112⋅132⋅22021 = (3⋅1001)2 ⋅ (22⋅1001 − 1) = 198585576189 would be an odd perfect number if only 22021 were a prime number, since the sum-of-divisors function for D would satisfy, if 22021 were prime,

where we ignore the fact that 22021 is composite (22021 = 192 ⋅ 61).

A Descartes number is defined as an odd number n = m ⋅ p where m and p are coprime and 2n = σ(m) ⋅ (p + 1), whence p is taken as a 'spoof' prime. The example given is the only one currently known.

If m is an odd almost perfect number,[1] that is, σ(m) = 2m − 1 and 2m − 1 is taken as a 'spoof' prime, then n = m ⋅ (2m − 1) is a Descartes number, since σ(n) = σ(m ⋅ (2m − 1)) = σ(m) ⋅ 2m = (2m − 1) ⋅ 2m = 2n. If 2m − 1 were prime, n would be an odd perfect number.

Properties

Banks et al. showed in 2008 that if n is a cube-free Descartes number not divisible by , then n has over a million distinct prime divisors.

Tóth showed in 2021 that if denotes a Descartes number (other than Descartes’ example), with pseudo-prime factor , then .

Generalizations

John Voight generalized Descartes numbers to allow negative bases. He found the example .[2] Subsequent work by a group at Brigham Young University found more examples similar to Voight's example,[2] and also allowed a new class of spoofs where one is allowed to also not notice that a prime is the same as another prime in the factorization.[3]

See also

Notes

  1. ^ Currently, the only known almost perfect numbers are the non-negative powers of 2, whence the only known odd almost perfect number is 20 = 1.
  2. ^ a b Nadis, Steve (September 10, 2020). "Mathematicians Open a New Front on an Ancient Number Problem". Quanta Magazine. Retrieved 3 October 2021.
  3. ^ Andersen, Nickolas; Durham, Spencer; Griffin, Michael J.; Hales, Jonathan; Jenkins, Paul; Keck, Ryan; Ko, Hankun; Molnar, Grant; Moss, Eric; Nielsen, Pace P.; Niendorf, Kyle; Tombs, Vandy; Warnick, Merrill; Wu, Dongsheng (2020). "Odd, spoof perfect factorizations". J. Number Theory (234): 31–47. arXiv:2006.10697.{{cite journal}}: CS1 maint: multiple names: authors list (link) arXiv version

References


This page was last edited on 13 March 2024, at 22:09
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.