To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Perfect digit-to-digit invariant

From Wikipedia, the free encyclopedia

In number theory, a perfect digit-to-digit invariant (PDDI; also known as a Munchausen number[1]) is a natural number in a given number base that is equal to the sum of its digits each raised to the power of itself. An example in base 10 is 3435, because . The term "Munchausen number" was coined by Dutch mathematician and software engineer Daan van Berkel in 2009,[2] as this evokes the story of Baron Munchausen raising himself up by his own ponytail because each digit is raised to the power of itself.[3][4]

YouTube Encyclopedic

  • 1/3
    Views:
    2 364
    234 012
    967
  • Dividing a cube Into five Tetrahedrals
  • 2. Models of Computation, Document Distance
  • 2. Achieving Viewpoint Invariance

Transcription

Definition

Let be a natural number which can be written in base as the k-digit number where each digit is between and inclusive, and . We define the function as . (As 00 is usually undefined, there are typically two conventions used, one where it is taken to be equal to one, and another where it is taken to be equal to zero.[5][6]) A natural number is defined to be a perfect digit-to-digit invariant in base b if . For example, the number 3435 is a perfect digit-to-digit invariant in base 10 because .

for all , and thus 1 is a trivial perfect digit-to-digit invariant in all bases, and all other perfect digit-to-digit invariants are nontrivial. For the second convention where , both and are trivial perfect digit-to-digit invariants.

A natural number is a sociable digit-to-digit invariant if it is a periodic point for , where for a positive integer , and forms a cycle of period . A perfect digit-to-digit invariant is a sociable digit-to-digit invariant with . An amicable digit-to-digit invariant is a sociable digit-to-digit invariant with .

All natural numbers are preperiodic points for , regardless of the base. This is because all natural numbers of base with digits satisfy . However, when , then , so any will satisfy until . There are a finite number of natural numbers less than , so the number is guaranteed to reach a periodic point or a fixed point less than , making it a preperiodic point. This means also that there are a finite number of perfect digit-to-digit invariant and cycles for any given base .

The number of iterations needed for to reach a fixed point is the -factorion function's persistence of , and undefined if it never reaches a fixed point.

Perfect digit-to-digit invariants and cycles of Fb for specific b

All numbers are represented in base .

Convention 00 = 1

Base Nontrivial perfect digit-to-digit invariants () Cycles
2 10
3 12, 22 2 → 11 → 2
4 131, 313 2 → 10 → 2
5

2 → 4 → 2011 → 12 → 10 → 2

104 → 2013 → 113 → 104

6 22352, 23452

4 → 1104 → 1111 → 4

23445 → 24552 → 50054 → 50044 → 24503 → 23445

7 13454 12066 → 536031 → 265204 → 265623 → 551155 → 51310 → 12125 → 12066
8 405 → 6466 → 421700 → 3110776 → 6354114 → 142222 → 421 → 405
9 31, 156262, 1656547
10 3435
11
12 3A67A54832

Convention 00 = 0

Base Nontrivial perfect digit-to-digit invariants (, )[1] Cycles
2
3 12, 22 2 → 11 → 2
4 130, 131, 313
5 103, 2024

2 → 4 → 2011 → 11 → 2

9 → 2012 → 9

6 22352, 23452

5 → 22245 → 23413 → 1243 → 1200 → 5

53 → 22332 → 150 → 22250 → 22305 → 22344 → 2311 → 53

7 13454
8 400, 401
9 30, 31, 156262, 1647063, 1656547, 34664084
10 3435, 438579088
11
12 3A67A54832

Programming examples

The following program in Python determines whether an integer number is a Munchausen Number / Perfect Digit to Digit Invariant or not, following the convention .

num = int(input("Enter number:"))
temp = num
s = 0.0
while num > 0:
     digit = num % 10
     num //= 10
     s+= pow(digit, digit)
     
if s == temp:
    print("Munchausen Number")
else:
    print("Not Munchausen Number")

The examples below implements the perfect digit-to-digit invariant function described in the definition above to search for perfect digit-to-digit invariants and cycles in Python for the two conventions.

Convention 00 = 1

def pddif(x: int, b: int) -> int:
    total = 0
    while x > 0:
        total = total + pow(x % b, x % b)
        x = x // b
    return total

def pddif_cycle(x: int, b: int) -> list[int]:
    seen = []
    while x not in seen:
        seen.append(x)
        x = pddif(x, b)
    cycle = []
    while x not in cycle:
        cycle.append(x)
        x = pddif(x, b)
    return cycle

Convention 00 = 0

def pddif(x: int, b: int) -> int:
    total = 0
    while x > 0:
        if x % b > 0:
            total = total + pow(x % b, x % b)
        x = x // b
    return total

def pddif_cycle(x: int, b: int) -> list[int]:
    seen = []
    while x not in seen:
        seen.append(x)
        x = pddif(x, b)
    cycle = []
    while x not in cycle:
        cycle.append(x)
        x = pddif(x, b)
    return cycle

See also

References

  1. ^ a b van Berkel, Daan (2009). "On a curious property of 3435". arXiv:0911.3038 [math.HO].
  2. ^ Olry, Regis and Duane E. Haines. "Historical and Literary Roots of Münchhausen Syndromes", from Literature, Neurology, and Neuroscience: Neurological and Psychiatric Disorders, Stanley Finger, Francois Boller, Anne Stiles, eds. Elsevier, 2013. p.136.
  3. ^ Daan van Berkel, On a curious property of 3435.
  4. ^ Parker, Matt (2014). Things to Make and Do in the Fourth Dimension. Penguin UK. p. 28. ISBN 9781846147654. Retrieved 2 May 2015.
  5. ^ Narcisstic Number, Harvey Heinz
  6. ^ Wells, David (1997). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin. p. 185. ISBN 0-14-026149-4.

External links

This page was last edited on 22 December 2023, at 20:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.