Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

y=Br(x)

В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что

Разрез на комплексной плоскости проходит вдоль вещественной полуоси .

Корень Бринга был введён шведским математиком Эрландом Самуэлем Брингом[en].

Джордж Джеррард[en] показал, что все уравнения 5-й степени могут быть решены в радикалах и корнях Бринга. Более полное представление ультрарадикала, как обратной функции ультрастепени показали российские исследователи Груздов и Березины. Они же нашли точный радиус сходимости степенного ряда ультрарадикала, и показали как использовать его для аналитического решения многочленов с любым количеством членов и с любыми степенями, в том числе и комплексными. На основе их метода в некоторых калькуляторах уже имеются кнопки "brn". В сущности это такая же кнопка, как и кнопка корня, но требует указывать две степени.

Нормальная форма Бринга — Жерара

Если

тогда, если

мы можем получить полином 5-й степени от , сделав преобразование Чирнгауза, например, используя результант для исключения . Мы можем затем подобрать конкретные значения коэффициентов для того, чтобы получить полином от в форме

Эта неполная форма, открытая Брингом и переоткрытая Жераром, называется нормальной формой Бринга — Жерара. Метод «в лоб» при попытке приведения к нормальной форме Бринга — Жерара не срабатывает; нужно делать это шаг за шагом, применяя несколько преобразований Чирнгауза, которые современные системы аналитических вычислений делают довольно легко.

В начале, подставляя вместо , избавляемся от члена с . Затем, применяя идею Чирнгауза для исключения и члена , введём переменную и найдём такие и , чтобы в результате коэффициенты при и стали равны 0. Конкретнее, подстановки

и

исключают члены третьей и четвёртой степени одновременно из

Следующим шагом делаем подстановку

в форму

и исключаем также член второй степени, в процессе чего не потребуется решения уравнений степени выше 3. При этом выражения для и содержат квадратные корни, а в выражении для присутствует корень третьей степени.

Общий вид сравнительно легко вычислить с помощью компьютерных систем типа Maple или Mathematica, но он слишком громоздкий, поэтому лучше опишем метод, который затем может быть применён в конкретном случае. В любом частном случае можно составить систему из трёх уравнений для коэффициентов и решить её. Одно из решений, полученных таким образом, будет включать корни многочленов не выше третьей степени; рассмотрев затем результант с вычисленными коэффициентами, сведём уравнение к форме Бринга — Жерара. Корни первоначального уравнения выражаются через корни полученного уравнения.

Рассматриваемые как алгебраическая функция, решения уравнения

зависят от двух параметров, и , однако заменой переменной можно видоизменить уравнение так, чтобы неизвестная была функцией уже только одного параметра. Так, если положить

придём к форме

которая содержит как алгебраическую функцию одного комплексного, вообще говоря, параметра , где .

Корни Бринга

Как функции комплексной переменной t, корни x уравнения

имеют точки ветвления, где дискриминант 800 000(t4 - 1) обращается в ноль, то есть в точках 1, −1, а также i и -i. Монодромия вокруг любой из точек ветвления обменивает две из них, оставляя одну на месте. Для вещественных значений t, больших или равных −1, наибольший вещественный корень есть функция от t, монотонно возрастающая от 1; назовём эту функцию корень Бринга, BR(t). Выбирая ветвь, обрезанную вдоль вещественной оси от до −1, мы можем продолжить корень Бринга на всю комплексную плоскость, устанавливая значения вдоль ветви так, чтобы получалось аналитическое продолжение вдоль верхней полуплоскости.

Конкретно, положим , и последовательность ai определим рекуррентно

Для комплексных значений t таких, что |t - 57| < 58, получим

что можно аналитически продолжить, о чём было уже упомянуто.

Корни x5 — 5x — 4t = 0 можно теперь выразить в терминах корней Бринга таким образом:

для n от 0 до 3, и

для пятого корня.

Решение общего уравнения пятой степени

Мы можем теперь выразить корни полинома

в терминах радикалов Бринга как

для подсчёта корня достаточно брать только 1 значение из 4 возможных

.

Итак, у нас есть сведение к форме Бринга-Жерара в терминах разрешимых полиномиальных уравнений, при этом используются полиномиальные преобразования, включающие выражения в корнях не выше четвёртой степени. Это значит, что преобразования могут быть обращены нахождением корней многочлена, выраженных в радикалах. Эта процедура порождает лишние решения, но если отсечь их численными методами, то получим выражение для корней уравнения пятой степени через квадратные, кубические корни и радикалы Бринга, что т.о. будет алгебраическим решением в терминах алгебраических функций одной переменной - алгебраическим решением общего уравнения пятой степени.

Примеры

1)

2)

,

функция определена ниже

3)

.

4)

5)

6)

График функции

Для классификации введём дискриминант

Тогда в зависимости от знака D тип графика можно разбить на 3 случая:

Если , то уравнение имеет кратные корни.

Разрешимые классы уравнений 5 степени

1)

.

2) Если в уравнении ,

то корни выражаются через:

, где ,,

Другие свойства

Много других свойств корней Бринга было получено, первые были сформулированы в терминах модулярных эллиптических функций Шарлем Эрмитом в 1858. Напишем основные свойства:

0.

  1. , как следствие из 2

Разрешимость в радикалах

если ,

то уравнение разрешимо в стандартных радикалах.

Разложение в ряд при

Введём: ,

Ряд примет вид:

y=H(x)

Тогда:

при

, где

при

y=L(x)

где

Разложение в ряд при

или

Частные значения

Решение через пределы

Дано уравнение: , его корень можно представить в виде:

, или

Решение через тета-функции

1),

для всех 5 корней

2) Для определим:

- Эта-функция Дедекинда[en]

Тогда: , знак выбирается соответственно.

Вывод Глассера

По М. Л. Глассеру (см. ссылку внизу) можно найти решение любого полиномиального уравнения из трёх слагаемых вида:

В частности, произвольное уравнение пятой степени может быть сведено к такой форме с помощью преобразований Чирнхгауза, показанных выше. Возьмём , где общая форма:

а

Формула Лагранжа показывает, что любая аналитическая функция f в окрестности корня преобразованного общего уравнения относительно ζ может быть выражена в виде бесконечного ряда:

Если мы положим в этой формуле, то сможем получить корень:

Следующие N-2 корня могут быть найдены заменой на другие корни (N-1)-й степени из единицы, а последний корень - из теоремы Виета (например, используя тот факт, что сумма всех корней многочлена трёхчленной формы, приведённой выше, равна 1). С помощью теоремы умножения Гаусса[en] вышеуказанный бесконечный ряд может быть разбит в конечную сумму гипергеометрических функций:

где .

Корни уравнения тогда можно представить как сумму самое большее N-1 гипергеометрических функций. Применяя этот метод к редуцированной форме Бринга-Жеррара, определим следующие функции:

которые суть гипергеометрические функции, присутствующие в рядах выше. Корни уравнения пятой степени тогда:

Это по существу тот же результат, что был получен методом дифференциальной резольвенты, разработанным Джеймсом Коклом[en]} и Робертом Харлеем в 1860 году.

Дифференциальная резольвента

Функция φ может быть определена так:

Тогда дифференциальная резольвента такова:

См. также

Внешние ссылки


Эта страница в последний раз была отредактирована 6 февраля 2024 в 06:48.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).