Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гипергеометрическая функция

Из Википедии — свободной энциклопедии

Гипергеометри́ческая фу́нкция (функция Гаусса) — одна из специальных функций. Определяется внутри круга как сумма гипергеометрического ряда

а при  — как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка называемого гипергеометрическим уравнением. Гипергеометрический ряд может рассматриваться как обобщение геометрического ряда (отсюда название); частный случай гипергеометрической функции является суммой геометрического ряда.

История

Термин «гипергеометрический ряд» впервые был использован Джоном Валлисом в 1655 году в книге Arithmetica Infinitorum. Термин этот относился к ряду, общая формула членов которого имеет вид[1]

Гипергеометрические ряды изучались Леонардом Эйлером, и более подробно Гауссом[2]. В XIX веке изучение было продолжено Эрнстом Куммером, а Бернхард Риман определил гипергеометрическую функцию через уравнение, которому она удовлетворяет.

Гипергеометрическое уравнение

Рассмотрим дифференциальное уравнение Эйлера где параметры a, b и c могут быть произвольными комплексными числами. Его обобщение на произвольные регулярные сингулярные точки даётся дифференциальным уравнением Римана. Уравнение Эйлера имеет три особые точки: 0, 1 и .

Когда параметр не равен нулю и отрицательным целым числам регулярное в нуле решение уравнения Эйлера будет можно записать через ряд, называемый гипергеометрическим:

Эту функцию называют гипергеометрической. Часто применяют обозначение (символ Похгаммера)

где  — гамма-функция (при n = 0 по определению (p)n = 1). Тогда гипергеометрическую функцию можно представить в виде

Обозначение указывают, что есть два параметра, a и b, «идущие в числитель», и один, c, «идущий в знаменатель». На границе ряд, через который определяется гипергеометрическая функция, абсолютно сходится, если действительная часть суммы , условно сходится при , и расходится, если . Второе линейно независимое решение дифференциального уравнения Эйлера имеет вид

Оно имеет особую точку при и справедливо при всех неположительных .[3]

Интегральное представление для гипергеометрической функции при (формула Эйлера) может быть записано следующим образом:

где  — гамма-функция Эйлера. Это выражение представляет собой однозначную аналитическую функцию на комплексной -плоскости с разрезом вдоль действительной оси от до и обеспечивает аналитическое продолжение на всю комплексную плоскость для гипергеометрического ряда, сходящегося лишь при .

Частные значения при z = 1 / 2

Вторая теорема суммации Гаусса выражается формулой:

Теорема Бейли выражается формулой:

Запись других функций через гипергеометрическую

Важным свойством гипергеометрической функции является то, что из неё могут быть получены многие специальные и элементарные функции при определённых значениях параметров и преобразовании независимого аргумента.

Примеры

  • Полный эллиптический интеграл первого рода:
  • Полный эллиптический интеграл второго рода:
  • Полином Лежандра:
  • Присоединённая функция Лежандра:
  • Функции Бесселя:
  • Функция Куммера (Похгаммера), или вырожденная гипергеометрическая функция  (англ.)
    является решением вырожденного гипергеометрического уравнения
  • Вырожденная гипергеометрическая функция с целым неположительным первым аргументом представляет собой обобщённый полином Лагерра:

Тождества

  • И замечательный частный случай предыдущего выражения:

Примечания

Литература

  • Математическая энциклопедия / Под ред. И. М. Виноградова. — М., 1977. — Т. 1.
  • Бейтмен Г., Эрдейи А. Высшие трансцендентные функции = Higher Transcendental Functions / Пер. Н. Я. Виленкина. — Изд. 2-е. — М.: Наука, 1973. — Т. 1. — 296 с. — 14 000 экз.
  • Кузнецов Д. С. Специальные функции. — М.: Высшая школа, 1962.
  • Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 4-е. — М.: Наука, 1989. — 768 с. — («Теоретическая физика», том III). — ISBN 5-02-014421-5. — математические дополнения
  • Kazuhiko Aomoto, Michitake Kita. Theory of Hypergeometric Functions / Transl. by Kenji Iohara. — Springer, 2011. — Vol. 305. — 317 p. — (Springer Monographs in Mathematics Series). — ISBN 9784431539124.
  • Scott J. F. The mathematical work of John Wallis, D.D., F.R.S., (1616-1703). — American Mathematical Soc., 1981. — 240 p. — (Chelsea Publishing Series). — ISBN 9780828403146.
Эта страница в последний раз была отредактирована 4 апреля 2023 в 20:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).