Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Аналитическая функция

Из Википедии — свободной энциклопедии

Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения.

Однозначная функция называется аналитической в точке , если сужение функции на некоторую окрестность является аналитической функцией. Если функция аналитична в точке , то она аналитическая в каждой точке некоторой окрестности точки .

Однозначная аналитическая функция одной комплексной переменной — это функция , для которой в некоторой односвязной области , называемой областью аналитичности, выполняется одно из четырёх равносильных условий:

  1. Ряд Тейлора функции в каждой точке сходится, и его сумма равна (аналитичность в смысле Вейерштрасса).
  2. В каждой точке выполняются условия Коши — Римана и Здесь и  — вещественная и мнимая части рассматриваемой функции. (Аналитичность в смысле Коши — Римана.)
  3. Интеграл для любой замкнутой кривой (аналитичность в смысле Коши).
  4. Функция является голоморфной в области . То есть комплексно дифференцируема в каждой точке .

В курсе комплексного анализа доказывается эквивалентность этих определений.

Свойства

  • Арифметические свойства

Если и аналитичны в области

  1. Функции , и аналитичны в .
  2. Если в области не обращается в ноль, то будет аналитична в
  3. Если в области не обращается в ноль, то будет аналитична в .
  • Аналитическая функция бесконечно дифференцируема в своей области аналитичности. Для комплексных функций одной переменной верно и обратное.

Некоторые свойства аналитических функций близки к свойствам многочленов, что, впрочем, и неудивительно — определение аналитичности в смысле Вейерштрасса свидетельствует о том, что аналитические функции — в некотором роде предельные варианты многочленов. Допустим, согласно основной теореме алгебры любой многочлен может иметь нулей числом не более его степени. Для аналитических функций справедливо аналогичное утверждение, вытекающее из теоремы единственности в альтернативной форме:

  • Если множество нулей аналитической в односвязной области функции имеет в этой области предельную точку, то функция тождественно равна нулю.
  • Для функции от нескольких действительных переменных аналитичности по каждой из переменных недостаточно для аналитичности функции. Для функции от нескольких комплексных переменных аналитичности по каждой из переменных достаточно для аналитичности функции (Теорема Хартогса).

Примеры

Все многочлены от z являются аналитическими функциями на всей плоскости .

Далее, аналитическими, хотя и не на всей комплексной плоскости, являются рациональные функции, показательная функция, логарифм, тригонометрические функции, обратные тригонометрические функции и многие другие классы функций, а также суммы, разности, произведения, частные аналитических функций.

Примеры неаналитических функций на включают

  1. ,
  2. ,

поскольку они не имеют комплексной производной ни в одной точке. При этом сужение на вещественную ось будет аналитической функцией вещественного переменного (так как оно полностью совпадает с сужением функции ).

См. также

Литература

Ссылки

Эта страница в последний раз была отредактирована 15 сентября 2020 в 21:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).