Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Число  i {\displaystyle i}  на комплексной плоскости. Вещественные числа лежат на горизонтальной оси, чисто мнимые — на вертикальной.
Число на комплексной плоскости. Вещественные числа лежат на горизонтальной оси, чисто мнимые — на вертикальной.

Мни́мая едини́ца — комплексное число, квадрат которого равен . В математике, физике мнимая единица обозначается латинской буквой (в электротехнике: )[1][2].

Введение мнимой единицы позволяет расширить поле вещественных чисел до поля комплексных чисел. Одной из причин введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — об этом говорит основная теорема алгебры. Существуют и другие области, в которых комплексные числа приносят большую пользу.

Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: при наличии трёх вещественных корней для получения двух из них формула Кардано требовала извлечения квадратных корней из отрицательных чисел.

Вплоть до конца XIX века наряду с символом использовалось обозначение однако современные источники предписывают во избежание ошибок под знаком радикала помещать только неотрицательные выражения[3][4]. Более того, помимо мнимой единицы, существует ещё одно комплексное число, квадрат которого равен — число в паре с которым мнимая единица составляет следующие свойства:

Термин «мнимая единица» может употребляться не только для комплексных чисел, но и для их обобщений[⇨].

Степени мнимой единицы

Степени повторяются в цикле:

что может быть записано для любой степени в виде:

где n — любое целое число.

Отсюда: , где mod 4 — это остаток от деления на 4.

Возведение в комплексную степень является многозначной функцией. Например, таковой является величина , которая представляет бесконечное множество вещественных чисел:

где

Иными словами, где под {ii} обозначено множество всех значений, которые объединены выражением ii.

При получаем число соответствующее главному значению аргумента (или главному значению комплексного натурального логарифма) мнимой единицы.

Также верно, что .

Факториал

Факториал мнимой единицы i можно определить как значение гамма-функции от аргумента 1 + i:

Также

[5]

потому что |i!|2 = i! i! = i! (i)! = Γ(1 + i) Γ(1 − i), что по рекуррентному соотношению гамма-функции можно переписать как i Γ(i) Γ(1 − i), а затем по формуле дополнения Эйлера — как iπsin πi = πsinh π.

Корни из мнимой единицы

Корни квадратные из мнимой единицы
Корни квадратные из мнимой единицы
Корни кубические из мнимой единицы (вершины треугольника)
Корни кубические из мнимой единицы (вершины треугольника)

В поле комплексных чисел корень n-й степени имеет n значений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.

В частности, и

Также корни из мнимой единицы могут быть представлены в показательном виде:

Иные мнимые единицы

В конструкции удвоения по Кэли — Диксону или в рамках алгебры по Клиффорду «мнимых единиц расширения» может быть несколько. Но в этом случае могут возникать делители нуля и иные свойства, отличные от свойств комплексного «i». Например, в теле кватернионов три антикоммутативных мнимых единицы, а также имеется бесконечно много решений уравнения .

К вопросу об интерпретации и названии

Гаусс утверждал также, что если бы величины 1, −1 и √−1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввел термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения √−1 символ i.Морис Клайн, «Математика. Утрата определённости». Глава VII. Нелогичное развитие: серьёзные трудности на пороге XIX в.

Обозначения

Обычное обозначение — , но в электро- и радиотехнике мнимую единицу принято обозначать , чтобы не путать с обозначением мгновенной силы тока: .

В языке программирования Python мнимая единица записывается как 1j.

В языке программирования Wolfram Language мнимая единица записывается как I.

См.также

Примечания

  1. Комплексное число // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  2. Мнимая единица // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 708.
  3. Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — С. 49. — 591 с.
  4. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. — М.: Наука, 1970. — С. 33. — 720 с.
  5. "abs(i!)", WolframAlpha.

Ссылки

Эта страница в последний раз была отредактирована 24 сентября 2021 в 05:09.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).