Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

График многочлена 7 степени.
График многочлена 7 степени.

Многочле́н (или полино́м от греч. πολυ- «много» + лат. nomen «имя») от переменных — это сумма одночленов или, строго, — конечная формальная сумма вида

, где
  •  — набор из целых неотрицательных чисел, именуемый мультииндексом,
  •  — число, именуемое коэффициентом многочлена, зависящее только от мультииндекса .

В частности, многочлен от одной переменной есть конечная формальная сумма вида

, где

С помощью многочлена вводятся понятия «алгебраическое уравнение», «алгебраическая функция» и «алгебраическое число».

Изучение и применение

Изучение полиномиальных уравнений и их решений долгое время составляло едва ли не главный объект «классической алгебры».

С изучением многочленов связан целый ряд преобразований в математике: введение в рассмотрение нуля, отрицательных, а затем и комплексных чисел, а также появление теории групп как раздела математики и выделение классов специальных функций в математическом анализе.

Благодаря тому, что вычисления, связанные с многочленами, просты по сравнению с более сложными классами функций, а также тому факту, что множество многочленов плотно в пространстве непрерывных функций на компактных подмножествах евклидова пространства (см. аппроксимационную теорему Вейерштрасса), были развиты методы разложения в ряды и полиномиальной интерполяции в математическом анализе.

Многочлены также играют ключевую роль в алгебраической геометрии. Её ключевым объектом являются множества, определённые как решения систем полиномиальных уравнений.

Особые свойства преобразования коэффициентов при перемножении многочленов используются в алгебраической геометрии, алгебре, теории узлов и других разделах математики для кодирования или выражения при помощи многочленов свойств различных объектов.

Связанные определения

  • Многочлен вида называется одночленом или мономом мультииндекса .
  • Одночлен, соответствующий мультииндексу называется свободным членом.
  • Полной степенью (ненулевого) одночлена называется целое число .
  • Множество мультииндексов , для которых коэффициенты ненулевые, называется носителем многочлена, а его выпуклая оболочка — многогранником Ньютона.
  • Степенью многочлена называется максимальная из степеней его одночленов. Степень тождественного нуля либо принимается неопределённой, либо доопределяется значением или (см. степень нулевого многочлена).[1]
  • Многочлен, являющийся суммой двух мономов, называется двучленом или биномом,
  • Многочлен, являющийся суммой трёх мономов, называется трёхчленом или триномом.
  • Коэффициенты многочлена обычно берутся из определённого коммутативного кольца (чаще всего поля, например, поля вещественных или комплексных чисел). В этом случае, относительно операций сложения и умножения многочлены образуют кольцо (более того ассоциативно-коммутативную алгебру над кольцом без делителей нуля) которое обозначается .
  • Для многочлена одной переменной, решение уравнения называется его корнем.

Полиномиальные функции

Пусть алгебра над кольцом Произвольный многочлен определяет полиномиальную функцию

Чаще всего рассматривают случай

В случае, если — поле вещественных или комплексных чисел (или любое другое поле с бесконечным числом элементов), функция полностью определяет многочлен p. Однако в общем случае это неверно, например: многочлены и из определяют тождественно равные функции .

Полиномиальная функция одного действительного переменного называется целой рациональной функцией.

Виды многочленов

  • Многочлен одной переменной называется унитарным, нормированным или приведённым, если его старший коэффициент равен единице.
  • Многочлен, все одночлены которого имеют одну и ту же полную степень, называется однородным.
    • Например  — однородный многочлен двух переменных, а не является однородным.
  • Многочлен, который можно представить в виде произведения многочленов низших степеней с коэффициентами из данного поля, называется приводимым (над данным полем), в противном случае — неприводимым.

Свойства

Делимость

Роль неприводимых многочленов в кольце многочленов сходна с ролью простых чисел в кольце целых чисел. Например, верна теорема: если произведение многочленов делится на неприводимый многочлен , то p или q делится на . Каждый многочлен степени большей нуля разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени).

Например, многочлен , неприводимый в поле рациональных чисел, разлагается на три множителя в поле вещественных чисел и на четыре множителя в поле комплексных чисел.

Вообще, каждый многочлен от одного переменного разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры).

Для двух и большего числа переменных этого уже нельзя утверждать. Над любым полем для любого существуют многочлены от переменных, неприводимые в любом расширении этого поля. Такие многочлены называются абсолютно неприводимыми.

Вариации и обобщения

См. также

Литература

  • Винберг Э. Б. Алгебра многочленов. — М.: Просвещение, 1980. — 176 с.
  • Курош А. Г. Курс высшей алгебры, 9 изд. — М., 1968.
  • Мишина А. П., Проскуряков И. В. Высшая алгебра, 2 изд. — М., 1965.
  • Солодовников А. С, Родина М. А. Задачник-практикум по алгебре. — М.: Просвещение, 1985. — 127 с.
  • Прасолов В. В. Многочлены. — М.: МЦНМО, 2003. — 336 с. — ISBN 5-94057-077-1.
  • Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре. — М., 1977.

Примечания

  1. Eric W. Weisstein. Zero Polynomial (англ.). mathworld.wolfram.com. Дата обращения: 28 мая 2021.

Ссылки

Эта страница в последний раз была отредактирована 27 августа 2021 в 12:17.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).