Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Кольцом частных S−1R коммутативного кольца R (с единицей) по мультипликативной системе называется пространство дробей с числителями из R и знаменателями из S с арифметическими операциями и отождествлениями, обычными для дробей.

Используется также термин локализация кольца R по множеству S. Этот термин происходит из алгебраической геометрии: если R — это кольцо функций на алгебраическом многообразии V, то для того, чтобы изучить локальные свойства этого многообразия в точке p, обычно рассматривают множество функций, которые не равны нулю в этой точке и локализуют R по этому множеству.

Обычное обозначение для локализации (или кольца частных) — S−1R, однако в отдельных случаях чаще употребляют другие обозначения. Так, если S — дополнение простого идеала I, локализация R обозначается как RI (и называется локализацией кольца по простому идеалу), а если S — множество всех степеней элемента f, используется обозначение Rf. Последние два случая являются фундаментальными для теории схем.

Определение

Мультипликативной системой в кольце R называется подмножество S в R, содержащее 1, не содержащее нуля и замкнутое по умножению (в кольце R). Для мультипликативной системы S множество образует идеал в кольце R. В случае, когда множество S не содержит делителей нуля кольца R, идеал состоит только из нуля и система S называется регулярной. Если R — целостное кольцо, в нём всякая мультипликативная система регулярна.

Элементами кольца частных кольца R по мультипликативной системе S являются формальные дроби вида r/s, где r — произвольный элемент R, а s — элемент множества S. Две дроби и считаются эквивалентными (представляют один и тот же элемент кольца частных), если . Операции сложения и умножения определяются как обычно:

Проверяется, что, если в сумме или произведении дроби заменить на эквивалентные, новый результат будет выражаться дробью, эквивалентной прежней. С такими операциями множество приобретает структуру коммутативного кольца с единицей. Нулём в нём служит дробь 0/1, единицей — дробь 1/1.

Поле частных

Если R — область целостности, множество всех его ненулевых элементов образует мультипликативную систему. Кольцо частных по этой системе является полем и называется полем частных или полем отношений, оно обычно обозначается Frac(R) или Quot(R). Все элементы поля частных имеют вид a/b, где a, b — элементы R и b ≠ 0, с обычными арифметическими правилами сокращения числителя и знаменателя, сложения и умножения. Легко видеть, что поле частных — наименьшее поле, в которое можно вложить R. Например, поле частных поля изоморфно самому полю.

Существует естественное вложение кольца в своё поле частных, отправляющее a в a/1. Поле частных кольца R удовлетворяет следующему универсальному свойству: если h : RF — инъективный гомоморфизм колец из R в поле F, то существует единственный гомоморфизм колец g : Quot(R) → F, который совпадает с h на элементах R. Это универсальное свойство можно выразить такими словами: поле частных — это стандартный способ сделать элементы кольца обратимыми, соответственно, кольцо частных — это стандартный способ сделать некоторое подмножество элементов кольца обратимыми.

В терминах теории категорий конструкцию поля частных можно описать следующим образом. Рассмотрим категорию, объекты которой — целостные кольца, а морфизмы — инъективные гомоморфизмы колец. Существует забывающий функтор из категории полей в эту категорию (так как все гомоморфизмы полей инъективны). Оказывается, что у этого функтора существует левый сопряжённый, он и сопоставляет целостному кольцу его поле частных.

Свойства

  • Кольцо частных имеет каноническую структуру алгебры над кольцом R, так как вместе с кольцом S−1R сразу определён и канонический гомоморфизм кольца R в S−1R (каждому элементу r из R соответствует дробь r/1). Ядром этого гомоморфизма является идеал . В случае, если система S регулярна (не содержит делителей нуля), этот гомоморфизм инъективен, и кольцо R, таким образом, вложено в своё кольцо частных по системе S. При этом дробь r/s является единственным решением уравнения sx = r.
  • Если оба элемента r и s принадлежат S, тогда в кольце S−1R содержатся дроби r/s и s/r. Их произведение равно 1, следовательно, они обратимы. Обратно: каждый обратимый элемент кольца S−1R имеет вид er/s, где r и s принадлежат S, а e — обратимый элемент кольца R.
  • Если R — евклидово кольцо, то всякое кольцо, промежуточное между R и его полем частных, является кольцом частных кольца R по некоторой мультипликативной системе S.
  • Если система S состоит из одних только обратимых элементов кольца R, канонический гомоморфизм кольца R в S−1R превращается в изоморфизм, так как каждая дробь r/s оказывается сократимой в кольце R.
  • Существует биекция между множеством простых идеалов S−1R и множеством простых идеалов R, не пересекающихся со множеством S (индуцируемая гомоморфизмом RS −1R). Важный частный случай этого свойства: локализация кольца по простому идеалу p даёт локальное кольцо, единственный максимальный идеал которого порождён образами элементов p.

Примеры

  • Полем частных кольца целых чисел является поле рациональных чисел .
  • Степени числа 10 в образуют мультипликативную систему. Кольцом частных по ней будет кольцо конечных десятичных дробей.
  • Полем частных кольца многочленов над полем k будет поле рациональных функций .
  • Чётные числа в образуют простой идеал. Локализацией кольца по нему будет кольцо рациональных дробей, у которых в несократимом виде знаменатель — нечётное число.
  • Рассмотрим кольцо многочленов k[x] и f = x. Тогда Rf — кольцо многочленов Лорана[англ.] k[x, x−1].

Модули частных

Примерно такую же конструкцию можно применить и к модулям и для произвольного A-модуля M рассмотреть модуль частных S−1M. А именно, пусть  — множество элементов модуля, аннулируемых умножением на какой-либо элемент мультипликативной системы S, легко проверить, что это множество замкнуто относительно сложения и умножения на элемент кольца. Модуль частных S−1M — это множество формальных дробей вида m/s с отношением эквивалентности , если , с обычной операцией сложения дробей, а также с операцией умножения на элементы кольца S−1A вида m/s * a/s' = am/ss'.

Пусть  — гомоморфизм A-модулей, он индуцирует гомоморфизм S−1A-модулей , отображающий m/s в u(m)/s. Очевидно, что , то есть операция S−1 является функтором. Более того, этот функтор является точным.[1] Из этого следует, что если является подмодулем , то и является подмодулем . Если же мы рассмотрим два подмодуля данного модуля, то применение к ним S−1 перестановочно со взятием суммы модулей, пересечения модулей и взятием фактормодуля.

Существует представление модуля частных при помощи тензорного произведения: Из этого представления и из точности функтора локализации следует, что модуль является плоским.

Локальные свойства

Свойство P кольца A (или A-модуля M) называется локальным если следующие утверждения эквивалентны:

  • A (соотв. M) обладает свойством P,
  • AI (соотв. MI) обладает свойством P для всех простых идеалов I кольца A.

Можно привести следующие примеры локальных свойств: свойство модуля быть равным нулю, свойство гомоморфизма быть инъективным или сюръективным (нужно рассматривать гомоморфизмы, индуцированные локализацией), свойство модуля быть плоским.

Примечания

  1. Атья М., Макдональд И. Введение в коммутативную алгебру. — 2003.

Ссылки

Эта страница в последний раз была отредактирована 8 апреля 2024 в 21:06.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).