Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Инъекция (математика)

Из Википедии — свободной энциклопедии

Инъективная функция.

Инъе́кция (инъекти́вное отображе́ние) в математике — отображение множества во множество (), при котором разные элементы множества переводятся в разные элементы множества , то есть если два образа при отображении совпадают, то и прообразы совпадают: .

Инъекцию также называют вложением, или одно-однозначным отображением (в отличие от биекции, которая взаимно однозначна). В отличие от сюръекции, про которую говорят, что она отображает одно множество на другое, об инъекции аналогичная фраза формулируется как отображение в .

Инъекцию можно также определить как отображение, для которого существует левое обратное, то есть инъективно, если существует , при котором композиция .

Понятие инъекции (наряду с сюръекцией и биекцией) введено в трудах Бурбаки и получило широкое распространение почти во всех разделах математики.

Примеры

  •  (натуральный логарифм) — инъективно и сюръективно (здесь  — множество положительных чисел).
  •  — инъективно (здесь  — множество неотрицательных чисел).
  •  — не является инъективным, так как .

Применение

Обобщения

Литература

  • Н. К. Верещагин, А. Шень. Начала теории множеств // Лекции по математической логике и теории алгоритмов. (недоступная ссылка)
  • Ершов Ю. Л., Палютин Е. А. Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: Лань, 2004. — 336 с.
Эта страница в последний раз была отредактирована 18 сентября 2023 в 21:02.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).