Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Центр вписанной окружности

Из Википедии — свободной энциклопедии

Центр вписанной окружности
Окружность, вписанная в треугольник '"`UNIQ--postMath-00000001-QINU`"'

Окружность, вписанная в треугольник
Барицентрические координаты
Трилинейные координаты 1:1:1
Код ЭЦТ X(1)
Связанные точки
Изогонально сопряженная она же
Изотомически сопряженная центр антибиссектрис
Дополнительная[es] центр Шпикера
Антидополнительная[es] точка Нагеля
Логотип Викисклада Медиафайлы на Викискладе

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.

Традиционно обозначается латинской буквой (по первой букве английского слова "Incenter"). В энциклопедии центров треугольника зарегистрирован под символом .

Свойства

  • Центр вписанной окружности треугольника находится на одинаковом расстоянии от всех сторон треугольника.
  • Для треугольника со сторонами , и , противолежащими вершинам , и соответственно, инцентр делит биссектрису угла в отношении:
    .
Теорема трилистника
  • Если продолжение биссектрисы угла пересекает описанную окружность в точке , то выполняется равенство: , где  — центр вневписанной окружности, касающейся стороны ; это свойство инцентра известно как теорема трилистника (также — лемма о трезубце, теорема Клайнэра).
  • Расстояние между инцентром и центром описанной окружности выражается формулой Эйлера:
    ,
где и  — радиусы описанной и вписанной окружностей соответственно.
  • Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[1].
  • Инцентр можно найти как центр масс вершин треугольника если в каждую вершину поместить массу, равную длине противолежащей стороны (см. также Центр Шпикера).
Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)
  • Теорема Ригби. Если к любой стороне остроугольного треугольника провести высоту и касающуюся ее с другой стороны вневписанную окружность, то точка касания последней с этой стороной, середина упомянутой высоты, а также инцентр лежат на одной прямой.[4].
    • Из теоремы Ригби следует, что 3 отрезка, соединяющих середину каждой из 3 высот треугольника с точкой касания вневписанной окружности, проведенной к той же стороне, что и высота, пересекаются в инцентре.
Теорема Тебо 3
  • Третья теорема Тебо. Пусть  — произвольный треугольник,  — произвольная точка на стороне ,  — центр окружности, касающейся отрезков и описанной около окружности,  — центр окружности, касающейся отрезков и описанной около окружности. Тогда отрезок проходит через точку  — центр окружности, вписанной в , и при этом , где .
  • Слабая точка в треугольнике (weak point) та, у которой может найтись близнец с помощью её ортогонального сопряжения за пределы треугольника. Например, инцентр, Точка Нагеля и другие являются слабыми точками, ибо допускают получение аналогичных точек при их сопряжении за пределы треугольника.[5].

См. также

Примечания

  1. Мякишев А. Г. . Элементы геометрии треугольника. — М.: МЦНМО, 2002. — 32 с. — (Библиотека «Математическое просвещение». вып. 19). — ISBN 5-94057-048-8. — С. 11, п. 5.
  2. Honsberger, R.. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer. 1995. P. 51, Пункт (b).// https://b-ok.cc/book/447019/c8c303 Архивная копия от 14 июля 2020 на Wayback Machine
  3. Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с. Архивировано 4 марта 2016 года.
  4. Ross Honsberger, "3. An Unlikely Collinearity" in "Episodes in Nineteenth and Twentieth Century Euclidean Geometry" (Washington, DC: The Mathematical Association of America, 1996, ISBN 978-0883856390), p. 30, Figure 34
  5. Мякишев А. Прогулки по окружностям: от Эйлера до Тейлора// Математика. Все для учителя! № 6 (6). июнь. 2011. с. 11, правая колонка, 2-ой абзац сверху// https://www.geometry.ru/persons/myakishev/papers/circles.pdf Архивная копия от 22 августа 2022 на Wayback Machine

Литература

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 88-90. — 383 с. — ISBN 5-09-001287-3.
Эта страница в последний раз была отредактирована 23 февраля 2024 в 20:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).