Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Неравенство треугольника

Из Википедии — свободной энциклопедии

Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда меньше суммы длин двух его других сторон. Неравенство треугольника включается как аксиома в определение метрического пространства, нормы и т.д.; также, часто является теоремой в различных теориях.

Евклидова геометрия

Длина любой стороны треугольника не превосходит сумму длин двух других.
Длина любой стороны треугольника не превосходит сумму длин двух других.

Неравенство

выполняется в любом треугольнике . Причём равенство достигается только тогда, когда треугольник вырожден, и точка лежит строго между и .

Евклид в Началах доказывает неравенство треугольника следующим образом. Сначала доказывается теорема о том, что внешний угол треугольника больше внутреннего угла, с ним не смежного. Из неё выводится теорема о том, что против большей стороны треугольника лежит больший внутренний угол. Далее, методом от противного доказывается теорема о том, что против большего внутреннего угла треугольника лежит большая сторона. А из этой теоремы выводится неравенство треугольника.

Нормированное пространство

Пусть нормированное векторное пространство, где — произвольное множество, а — определённая на норма. Тогда по определению последней справедливо:

Гильбертово пространство

В гильбертовом пространстве, неравенство треугольника является следствием неравенства Коши — Буняковского.

Метрическое пространство

Пусть метрическое пространство, где — произвольное множество, а — определённая на метрика. Тогда по определению последней

Вариации и обобщения

Обратное неравенство треугольника

Следствием неравенства треугольника в нормированном и метрическом пространствах являются следующие неравенства:

Неравенство треугольника для трёхгранного угла

Каждый плоский угол выпуклого трёхгранного угла меньше суммы двух других его плоских углов.

Произвольное число точек

Обозначим расстояние между точками и . Тогда имеет место следующее неравенство: . Оно получается последовательным применением неравенства треугольника для трех точек: [1]

См. также

Примечания

  1. Шилов Г. Е. Математический анализ. Специальный курс. — М.: Физматлит, 1961. — C. 28
Эта страница в последний раз была отредактирована 17 мая 2022 в 20:15.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).