Для установки нажмите кнопочку Установить расширение. И это всё.
Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.
Как перевоплотить Википедию
Хотите, чтобы Википедия всегда выглядела так профессионально и современно? Мы создали расширение для браузера. Оно совершенствует любую страницу энциклопедии, которую вы посетите, с помощью магических технологий WIKI 2.
Попробуйте — вы его можете удалить в любой момент.
Установить за 5 сек.
Да-да, но позже
4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день и почти забыл как выглядит оригинальная Википедия.
Равнобедренный треугольник — треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Если треугольник имеет две равные стороны, то эти стороны называются боковыми сторонами, а третья сторона — основанием. Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании.
Евклид определил равнобедренный треугольник как треугольник, который имеет две равные стороны, но современная трактовка[1] предпочитает определение, где треугольник имеет хотя бы две равные стороны, определяя таким образом равносторонний треугольник как частный случай равнобедренного.
Свойство
Треугольник с двумя равными сторонами имеет одну ось симметрии, которая проходит через вершинный угол и середину основания. Эта ось симметрии совпадает с биссектрисой вершинного угла, медианой, проведённой к основанию, высотой, проведённой из вершинного угла и с серединным перпендикуляром[2][уточнить].
Свойства
Свойства равнобедренного треугольника
Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, h — высота равнобедренного треугольника