Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Равнобедренный треугольник

Из Википедии — свободной энциклопедии

Равнобедренный треугольник
Равнобедренный треугольник

Равнобедренный треугольниктреугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.

Терминология

Если треугольник имеет две равные стороны, то эти стороны называются боковыми сторонами, а третья сторона — основанием. Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании.

Евклид определил равнобедренный треугольник как треугольник, который имеет две равные стороны, но современная трактовка[1] предпочитает определение, где треугольник имеет хотя бы две равные стороны, определяя таким образом равносторонний треугольник как частный случай равнобедренного.

Свойство

Треугольник с двумя равными сторонами имеет одну ось симметрии, которая проходит через вершинный угол и середину основания. Эта ось симметрии совпадает с биссектрисой вершинного угла, медианой, проведённой к основанию, высотой, проведённой из вершинного угла и с серединным перпендикуляром[2][уточнить].

Свойства

Свойства равнобедренного треугольника
Свойства равнобедренного треугольника
  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
  • Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.

Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, h — высота равнобедренного треугольника

  • (следствие теоремы косинусов);
  • (следствие теоремы косинусов);
  • ;
  • (теорема о проекциях)

Радиус вписанной окружности может быть выражен пятью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:

Углы могут быть выражены следующими способами:

  • (теорема синусов).
  • Угол может также найден без и . Треугольник делится медианой пополам, и в полученных двух равных прямоугольных треугольниках вычисляется углы :

Периметр равнобедренного треугольника находится следующими способами:

  • (по определению);
  • (следствие теоремы синусов).

Площадь треугольника находится следующими способами:

См. также

Примечания

  1. Stahl 2003, стр. 37.
  2. Ostermann & Wanner. . — 2012. — С. 55, упражнение 7.
Эта страница в последний раз была отредактирована 12 ноября 2020 в 07:14.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).