Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Признак сравнения — утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов.

Формулировка

Пусть даны два знакоположительных ряда:

и

.

Тогда, если, начиная с некоторого места (), выполняется неравенство:

,

то из сходимости ряда следует сходимость .

Или же, если ряд расходится, то расходится и .

Доказательство

Обозначим частные суммы ряда . Из неравенств следует, что Поэтому из ограниченности вытекает ограниченность а из неограниченности следует неограниченность Справедливость признака вытекает из критерия сходимости для


Признак сравнения отношений

Также признак сравнения можно сформулировать в более удобной форме — в виде отношений.

Формулировка

Если для членов строго положительных рядов и , начиная с некоторого места (), выполняется неравенство:

,

то из сходимости ряда следует сходимость , а из расходимости следует расходимость .

Доказательство

Перемножая неравенства, составленные для , получаем

или

Дальше достаточно применить признак сравнения для положительных рядов и (и учесть, что постоянный множитель не влияет на сходимость).


Предельный признак сравнения

Поскольку достоверно установить справедливость этого неравенства при любых n — довольно сложная задача, то на практике признак сравнения обычно используется в предельной форме.

Формулировка

Если и есть строго положительные ряды и

,

то при из сходимости следует сходимость , а при из расходимости следует расходимость .

Доказательство

Из мы знаем, что для любого существует такое, что для всех мы имеем , или, что то же самое:

Так как , мы можем взять достаточно малым, чтобы было положительным. Но тогда , и по вышеописанному признаку сравнения если сходится, то сходится и .

Точно так же , и тогда, если сходится, то сходится и .

Таким образом либо оба ряда сходятся, либо они оба расходятся.

Литература

  • Ю. С. Богданов — «Лекции по математическому анализу» — Часть 2 — Минск — Издательство БГУ им. В. И. Ленина — 1978.
  • Г. М. Фихтенгольц. Теоремы сравнения рядов // Основы математического анализа. — СПб.: Лань, 2001. — Т. 2. — С. 17-19. — 464 с. — ISBN 5-8114-0191-4.

Ссылки

Эта страница в последний раз была отредактирована 3 января 2024 в 13:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).