Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.

Определение

Элемент g группы G называется элементом кручения, если он имеет конечный порядок, то есть существует натуральное n, такое что gn = e, где e обозначат нейтральный элемент группы. Группа называется периодической (или группой кручения), если все её элементы являются элементами кручения, и группой без кручения, если единственный элемент кручения — нейтральный. Известно, что любая абелева группа является модулем над кольцом целых чисел; в частности, определение элемента кручения для неё можно переформулировать так: существует ненулевое целое число, такое что умножение на это число переводит данный элемент в ноль. Это мотивирует следующее определение:

Элемент m модуля M над кольцом R называется элементом кручения, если существует ненулевой регулярный элемент r кольца R (то есть элемент, не являющийся левым или правым делителем нуля), аннулирующий m, то есть такой, что rm = 0. В случае работы с целостным кольцом предположение регулярности можно отбросить. Аналогичным образом определяются модуль кручения и модуль без кручения. В случае, если кольцо R коммутативно, можество всех элементов кручения модуля M образует подмодуль, называемый подмодулем кручения (в частности, для модуля над Z он называется подгруппой кручения).

Более общо, пусть M — модуль над кольцом R и S — мультипликативно замкнутая система кольца. Элемент m модуля M называется элементом S-кручения, если существует элемент мультипликативной системы, аннулирующий m. В частности, множество регулярных элементов кольца является наибольшей мультипликативной системой.

Примеры

  • Пусть M — свободный модуль над кольцом R, из определения немедленно следует, что M является модулем без кручения. В частности, векторные пространства не имеют кручения.
  • В модулярной группе любой нетривиальный элемент кручения либо имеет порядок 2 и является сопряженным с S, либо имеет порядок 3 и является сопряжённым с ST. Элементы кручения здесь не образуют подгруппу: например, S · ST = T, а T имеет бесконечный порядок.
  • Абелева группа (которую можно представлять себе как группу поворотов окружности на угол, соизмеримый с длиной окружности) является группой кручения. Этот пример можно обобщить следующим образом: если R — коммутативное кольцо, а Q — его поле частных, то Q/R является группой кручения.
  • Пусть задано векторное пространство V над полем F с линейным оператором. Если естественным образом рассматривать это пространство как F(x)-модуль, то этот модуль является модулем кручения (по теореме Гамильтона-Кэли, или просто из-за того, что пространство конечномерно).

Случай области главных идеалов

Пусть R — область главных идеалов, и M — конечнопорождённый R-модуль. Согласно соответствующей структурной теореме, этот модуль можно разложить в прямую сумму

где F — свободный R-модуль, а T(M) — подмодуль кручения модуля M. Для модулей, не являющихся конечнопорождёнными, такого разложения, вообще говоря, не существует: даже подгруппа кручения абелевой группы не обязательно является прямым слагаемым.

Кручение и локализация

Пусть R — область целостности с полем частных Q, а M — R-модуль. Тогда можно рассмотреть Q-модуль (то есть векторное пространство)

Существует естественный гомоморфизм из абелевой группы M в абелеву группу MQ, и ядро этого гомоморфизма — в точности подмодуль кручения. Аналогично, для локализации кольца R по мультипликативной системе S

ядро естественного гомоморфизма — это в точности элементы S-кручения. Таким образом, подмодуль кручения можно понимать как множество тех элементов, которые отождествляются при локализации.

Кручение в гомологической алгебре

Понятие кручения играет важную роль в гомологической алгебре. Если M и N — модули над коммутативным кольцом R, функтор Tor позволяет получить семейство R-модулей Tori(M,N). При этом модуль S-кручения модуля M естественно изоморфен Tor1(M, RS/R). В частности, из этого сразу следует, что плоские модули являются модулями без кручения. Название Tor является сокращением от английского torsion (кручение).

Литература

  • Ernst Kunz, Introduction to Commutative algebra and algebraic geometry, Birkhauser 1985 — ISBN 0-8176-3065-1
  • Irving Kaplansky, Infinite abelian groups, University of Michigan, 1954.
  • Michiel Hazewinkel (2001), Torsion submodule, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer — ISBN 978-1-55608-010-4
Эта страница в последний раз была отредактирована 28 мая 2016 в 21:51.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).