Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Нейтра́льный элеме́нт бинарной операции — элемент, который оставляет любой другой элемент неизменным при применении этой бинарной операции к этим двум элементам.

Определение

Пусть  — множество с определённой на нём бинарной операцией «». Элемент называется нейтральным относительно (умножения), если

.

В случаях некоммутативных операций, вводят левый нейтральный элемент , для которого

,

и правый нейтральный элемент , для которого

.

В общем случае может существовать произвольное количество элементов, нейтральных слева или справа. Если одновременно существуют и нейтральный слева элемент , и нейтральный справа элемент , то они обязаны совпадать (так как ).

Примеры

Множество Бинарная операция Нейтральный элемент
Вещественные числа (сложение) число 0
Вещественные числа (умножение) число 1
Вещественные числа (вычитание) число 0 (нейтральный справа)
Вещественные числа (возведение в степень) число 1 (нейтральный справа)
Расширенная числовая прямая (деление) число 1 (нейтральный справа)
Векторное пространство (сложение векторов) (нуль-вектор)
Матрицы размера (матричное сложение) нулевая матрица
Матрицы размера (матричное произведение) единичная матрица
Функции вида (композиция функций) тождественное отображение
Символьные строки конкатенация пустая строка
Расширенная числовая прямая (минимум) или (инфимум)
Расширенная числовая прямая (максимум) или (супремум)
Подмножества множества (пересечение множеств)
Множества (объединение множеств) (пустое множество)
Исчисление высказываний (конъюнкция) (истина)
Исчисление высказываний (дизъюнкция) (ложь)

Терминология

В алгебре

В приведённой в определении мультипликативной нотации нейтральный элемент принято называть единичным элементом или просто единицей по аналогии с одноимённым числом. См. статью «единица (алгебра)» о двусторонних нейтральных элементах умножения в кольцах, полях, и алгебрах над ними.

Если речь идёт о нейтральном элементе операции, обозначаемой (и называемой) сложением, то нейтральный элемент называют нулём, опять-таки по аналогии с одноимённым числом. Сложением называют не только операцию в теории колец и линейной алгебре, но, обычно, и групповую операцию в абелевых группах в аддитивной нотации.

В теории решёток

В теории решёток нейтральный элемент операции «∨» обозначается «0», а нейтральный элемент операции «∧» обозначается «1».

См. также

Ссылки

Эта страница в последний раз была отредактирована 2 сентября 2023 в 18:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).