Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гомологическая алгебра

Из Википедии — свободной энциклопедии

Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии.

Гомологическая алгебра играет важную роль в алгебраической топологии, применяется во многих разделах алгебры, таких, как теория групп, теория алгебр, алгебраическая геометрия, теория Галуа.

История

Первыми гомологические методы в алгебре применили в 40-х годах XX века Дмитрий Константинович Фаддеев, Самуэль Эйленберг и Саундерс Маклейн при изучении расширений групп.

Цепной комплекс

Цепной комплекс — это градуированный модуль с дифференциалом , , понижающим градуировку для цепного комплекса, , или повышающим градуировку для коцепного комплекса, .

Одним из основных понятий гомологической алгебры является цепной комплекс. Цепные комплексы возникают в различных разделах математики: в алгебраической топологии, коммутативной алгебре, алгебраической геометрии. Изучение общих свойств комплексов — одна из основных задач гомологической алгебры.

Резольвента

Проективной резольвентой модуля , называется левый комплекс , в котором все проективны и гомологии которого равны нулю, кроме нулевых.

Проективные резольвенты используются для вычисления функторов Torn(A, C) и Extn(A, C). Резольвенты возникли в алгебраической топологии для вычисления гомологий топологического произведения по гомологиям сомножителей по формуле Кюннета.

Производные функторы

Литература

  • А. Картан, С. Эйленберг, «Гомологическая алгебра», 1960 год.
  • С. Маклейн, «Гомология», 1966 год.
  • Р. Годеман «Алгебраическая топология и теория пучков», 1961 год.
  • Бурбаки, «Гомологическая алгебра», 1987 год.
Эта страница в последний раз была отредактирована 24 мая 2021 в 19:30.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).