Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Структурная теорема для конечнопорождённых модулей над областями главных идеалов

Из Википедии — свободной энциклопедии

Структурная теорема для конечнопорождённых модулей над областями главных идеалов является обобщением теоремы о классификации конечнопорождённых абелевых групп. Эта теорема предоставляет общий способ понимания некоторых результатов о канонических формах матриц.

Теорема

Если векторное пространство над полем k имеет конечное порождающее множество, из него всегда можно выбрать базис, так что векторное пространство будет изоморфно kn. Для конечнопорождённых модулей это уже неверно (контрпример — , который порождается одним элементом как Z-модуль), однако такой модуль можно представить как фактормодуль вида Rn/A (чтобы увидеть это, достаточно отобразить базис Rn в порождающее множество и воспользоваться теоремой о гомоморфизме). Изменяя выбор базиса в Rn и порождающего множества в модуле, можно привести этот фактор к простому виду, и это даёт структурную теорему.

Формулировка структурной теоремы обычно приводится в двух различных видах.

Разложение на инвариантные факторы

Каждый конечнопорождённый модуль M над областью главных идеалов R изоморфен единственному модулю вида

где и (то есть делится на ). Порядок ненулевых определён однозначно, как и число .

Таким образом, для указания конечнопорождённого модуля M достаточно указать ненулевые (удовлетворяющие двум условиям) и число равных нулю . Элементы определены однозначно с точностью до умножения на обратимые элементы кольца и называются инвариантными факторами.

Разложение на примарные факторы

Каждый конечнопорождённый модуль M над областью главных идеалов R изоморфен единственному модулю вида

где и все  — примарные идеалы. При этом сами определены однозначно (с точностью до умножения на обратимые элементы).

В случае, когда кольцо R является евклидовым, все примарные идеалы — это степени простых, то есть .

Набросок доказательства для евклидовых колец

Многие области главных идеалов являются также евклидовыми кольцами. К тому же, доказательство для евклидовых колец несколько проще; здесь приводятся его основные шаги.

Лемма. Пусть A — евклидово кольцо, M — свободный A-модуль, а N — его подмодуль. Тогда N также свободен, его ранг не превосходит ранга M, причём существует такой базис {e1, e2, … em} модуля M и такие ненулевые элементы {u1, … uk} кольца A, что {u1e1, … ukek} — базис N и ui+1 делится на ui.

Доказательство того, что N свободен, проводится индукцией по m. База m = 0 очевидна, докажем шаг индукции. Пусть M1 порождён элементами {e1, … em-1}, N1 — пересечение M1 и N — по предположению индукции свободен. Последние координаты элементов N в базисе {e1, … em} образуют подмодуль кольца A (то есть идеал), A — кольцо главных идеалов, поэтому этот идеал порождён одним элементом; если идеал нулевой — N совпадает с N1, если же он порождён элементом k, достаточно добавить в базис N1 один вектор, последняя координата которого равна k.
Теперь мы можем написать матрицу с элементами из A, соответствующую вложению N в M: в столбцах матрицы запишем координаты базисных бекторов N в некотором базисе M. Опишем алгоритм приведения этой матрицы к диагональному виду элементарными преобразованиями. Меняя местами строки и столбцы, переместим в верхний левый угол ненулевой элемент a с наименьшей нормой. Если все элементы матрицы на него делятся — вычитаем первую строку из остальных с таким коэффициентом, чтобы все элементы первого столбца (кроме первого элемента) стали нулевыми; затем аналогичным образом вычитаем первый столбец и переходим к преобразованиям оставшегося в правом нижнем углу квадрата, размерность которого на единицу меньше. Если же есть элемент b, не делящийся на a — мы можем уменьшить минимум нормы по ненулевым элементам матрицы, применив к паре (a, b) алгоритм Евклида (элементарные преобразования позволяют это сделать). Поскольку норма — натуральное число, мы рано или поздно придём к ситуации, когда все элементы матрицы делятся на a. По окончании работы этого алгоритма базисы M и N удовлетворяют всем условиям леммы.

Окончание доказательства. Рассмотрим конечнопорождённый модуль T с системой порождающих {e1, … em}. Существует гомоморфизм из свободного модуля в этот модуль, отображающий базис в систему порождающих. Применив к этому отображению теорему о гомоморфизме, получим, что T изоморфен фактору . Приведём базисы и к виду базисов в лемме. Легко видеть, что

Каждое конечное слагаемое здесь можно разложить в произведение примарных, так как кольцо A факториально (см. статью Китайская теорема об остатках). Чтобы доказать единственность этого разложения, нужно рассмотреть подмодуль кручения (тогда размерность свободной части описывается в инвариантных терминах как размерность фактора по кручению), а также подмодуль p-кручения для каждого простого элемента p кольца A. Число слагаемых вида (для всех n) инвариантно описывается как размерность подмодуля элементов, аннулируемых умножением на p, как векторного пространства над полем .

Следствия

Случай даёт классификацию конечнопорождённых абелевых групп.

Пусть T — линейный оператор на конечномерном векторном пространстве V над полем K. V можно рассматривать как модуль над (действительно, его элементы можно умножать на скаляры и на T), из конечномерности следует конечнопорождённость и отсутствие свободной части. Последний инвариантный фактор — минимальный многочлен, а произведение всех инвариантных факторов — характеристический многочлен. Выбрав стандартную форму матрицы оператора T, действующего на пространстве , получаем следующие формы матрицы T на пространстве V:

См. также

Примечания

  • Бурбаки Н. Алгебра. Часть 3. Модули, кольца, формы. — М.: Наука, 1966. Глава VII.
  • Винберг Э. Б., Курс алгебры. — М.: Изд-во´Факториал Пресс, 2001.
  • P. Aluffi. Algebra: Chapter 0 (Graduate Studies in Mathematics) — American Mathematical Society, 2009 — ISBN 0-82184-781-3.
  • Hungerford, Thomas W. (1980), Algebra, New York: Springer, с. 218–226, Section IV.6: Modules over a Principal Ideal Domain, ISBN 978-0-387-90518-1 
Эта страница в последний раз была отредактирована 25 декабря 2022 в 07:34.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).