Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.

Метрический тензор позволяет определить длины кривых, углы между кривыми, объём и другие понятия свойственные евклидову пространству. В частном случае поверхности метрика также называется первой квадратичной формой.

В общей теории относительности метрика рассматривается в качестве фундаментального физического поля (гравитационного) на четырехмерном многообразии физического пространства-времени. Широко используется и в других построениях теоретической физики, в частности, в биметрических теориях гравитации на пространстве-времени рассматривают сразу две метрики.

Далее в формулах этой статьи с повторяющимися индексами везде подразумевается суммирование по правилу Эйнштейна, то есть по каждому повторяющемуся индексу.

Способы задания

Координатное представление

Метрический тензор в локальных координатах , обычно задаётся как ковариантное тензорное поле . Через него определяются скалярные произведения координатных векторных полей :

А для любых векторных полей скалярное произведение вычисляется по формуле

,

где  — представление векторных полей в локальных координатах.

Замечания

Иногда метрический тензор задаётся двойственным способом, с помощью контравариантного тензора .

В случае невырожденных метрик

где  — символ Кронекера. В этом случае оба способа эквивалентны, и оба представления метрики бывают полезны.

Для вырожденных метрик иногда удобнее пользоваться именно контравариантной метрикой. Например, субриманова метрика может быть определена через тензор , но тензор для неё не определён.

Представление в поле реперов

Иногда удобно задавать метрический тензор через выбранное (не обязательно координатное, как это описано выше) поле реперов, то есть выбором реперного поля и матрицы .

Например, риманов метрический тензор может быть задан ортонормированным полем реперов[1].

Индуцированная метрика

Метрика, которая индуцируется гладким вложением многообразия в евклидово пространство , может быть посчитана по формуле:

где означает матрицу Якоби вложения и  — транспонированная к ней. Иначе говоря, скалярные произведения базисных координатных векторов касательного пространства , которые в этом случае можно отождествить с , определяются как

где обозначает скалярное произведение в .

Более обобщенно

Пусть многообразие с метрикой и гладкое вложение. Тогда метрика на , определённая равенством

называется индуцированной метрикой. Здесь обозначает дифференциал отображения .

Типы метрических тензоров

Совокупность метрических тензоров подразделяется на два класса:

  • невырожденные или псевдоримановы метрики, когда во всех точках многообразия. Среди невырожденных метрических тензоров, в свою очередь, различаются:
    • Риманов метрический тензор (или риманова метрика), для которого квадратичная форма является положительно определенной. Многообразие с выделенным римановым метрическим тензором называется римановым, они имеют естественную структуру метрического пространства.
    • Собственно псевдориманов метрический тензор (или индефинитная метрика), когда форма не является знакоопределённой. Многообразие с выделенным псевдоримановым метрическим тензором называется (собственно) псевдоримановым.
  • Вырожденные метрики, когда либо в некоторых точках.

Обычно под метрическим тензором без специального на то указания в математике понимается риманов метрический тензор; но если, рассматривая невырожденный метрический тензор, хотят подчеркнуть, что речь идет именно о римановом, а не псевдоримановом метрическом тензоре, то о нём говорят как о собственно римановом метрическом тензоре. В физике под метрическим тензором обычно подразумевают лоренцеву метрику пространства-времени.

Иногда под псевдоримановым тензором и псевдоримановым многообразием понимают то, что выше определено как собственно псевдоримановы метрика и многообразие, а для первых сохраняется только термин «невырожденная метрика» и соответственно «многообразие с невырожденной метрикой».

Связанные определения

  • Вектор нулевой длины в пространстве с псевдоримановой метрикой называется изотропным (также нулевым или светоподобным) и задает определенное изотропное направление на многообразии; например, свет в пространственно-временном континууме путешествует вдоль изотропных направлений.
  • Многообразие с выделенным римановым метрическим тензором называется римановым многообразием.
  • Многообразие с выделенным псевдоримановым метрическим тензором называется псевдоримановым многообразием.
  • Метрики на многообразии называются геодезически эквивалентными, если их геодезические (рассматриваемые как непараметризованные кривые) совпадают.

Свойства

  • Риманов метрический тензор может быть введён на любом паракомпактном гладком многообразии.
  • Риманов метрический тензор индуцирует на многообразии естественную структуру метрического пространства
  • Индефинитная метрика не порождает метрического пространства. Однако на её основе может быть, по крайней мере в некоторых случаях, специальным образом построена топология (см. Топология Александрова), вообще говоря, не совпадающая с естественной топологией многообразия.

Метрика и объём

Определитель матрицы метрического тензора дает квадрат объема параллелепипеда, натянутого на базисные векторы. (В ортонормированных базисах это единица).

Поэтому величина играет важную роль при вычислении объемов, а также при интегрировании по объему. В частности, входит в общее выражение тензора Леви-Чивиты, используемого для вычисления смешанного произведения, векторного произведения и их многомерных аналогов.

Интегрирование же по объему включает этот множитель, например, при необходимости проинтегрировать в координатах какой-то скаляр (чтобы результат был инвариантным):

где  — это элемент -мерного объема, а  — дифференциалы координат.

  • Для подмногообразий объём (площадь) определяется как объём (площадь) относительно индуцированной метрики.

Примеры

  • Метрический тензор на евклидовой плоскости:
    • В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
    • В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
    • В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
    • В полярных координатах:
  • Метрический тензор на сфере. Сфера (двумерная) радиуса , вложенная в трехмерное пространство, имеет естественную метрику, индуцированную евклидовой метрикой объемлющего пространства. В стандартных сферических координатах метрика принимает вид:
  • Метрический тензор для трёхмерного евклидова пространства:
    • В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
    • В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
    • В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
    • В сферических координатах: :
  • Метрика Лоренца (Метрика Минковского).
  • Метрика Шварцшильда

Изоморфизм между касательным и кокасательным пространствами

Метрический тензор устанавливает изоморфизм между касательным пространством и кокасательным пространством: пусть  — вектор из касательного пространства, тогда для метрического тензора на , мы получаем, что , то есть отображение, которое переводит другой вектор в число , является элементом дуального пространства линейных функционалов (1-форм) . Невырожденность метрического тензора (если или где она есть) превращает это отображение в биекцию, а тот факт, что сам по себе есть тензор, делает это отображение независимым от координат.

Для тензорных полей это позволяет «поднимать и опускать индексы» у любого тензорного поля (жаргонное название — «жонглирование индексами»). В компонентах операция поднятия-опускания индекса, выглядит так:

 — опускание индекса для вектора,
 — поднятие индекса для вектора,
 — пример одновременного поднятия индекса и опускания индекса для тензора большой валентности.

(К скалярам эта операция, естественно, не применяется).

Для тензороподобных объектов (не являющихся тензорами), как например символы Кристоффеля, преобразование контравариантных компонент в ковариантные и обратно определяется, как правило, так же, как и для тензорных. При желании жонглирование можно применить и к матрицам Якоби, только в этом случае нужно проследить за тем, что метрика для поднятия-опускания первого индекса будет, конечно, вообще говоря, отличаться от метрики для такой же операции со вторым.

См. также

Примечания

  1. См., например,
    • Картан Э. Ж. Риманова геометрия в ортогональном репере. — М.: изд-во МГУ, [1926-1927]1960
    • Картан Э. Ж. Теория конечных непрерывных групп и дифференциальная геометрия изложенная методом подвижного репера. — М.: изд-во МГУ, [1930]1963
Эта страница в последний раз была отредактирована 18 декабря 2020 в 21:11.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).