To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

5-cubic honeycomb

From Wikipedia, the free encyclopedia

5-cubic honeycomb
(no image)
Type Regular 5-space honeycomb
Uniform 5-honeycomb
Family Hypercube honeycomb
Schläfli symbol {4,33,4}
t0,5{4,33,4}
{4,3,3,31,1}
{4,3,4}×{∞}
{4,3,4}×{4,4}
{4,3,4}×{∞}(2)
{4,4}(2)×{∞}
{∞}(5)
Coxeter-Dynkin diagrams















5-face type {4,33} (5-cube)
4-face type {4,3,3} (tesseract)
Cell type {4,3} (cube)
Face type {4} (square)
Face figure {4,3} (octahedron)
Edge figure 8 {4,3,3} (16-cell)
Vertex figure 32 {4,33} (5-orthoplex)
Coxeter group
[4,33,4]
Dual self-dual
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space.

YouTube Encyclopedic

  • 1/5
    Views:
    1 696 587
    231 691
    43 278
    2 737
    1 464 687
  • there are 48 regular polyhedra
  • SolidWorks /SolidWorks Tutorial Honeycomb /SolidWorks
  • Lecture - 5 Soil Mechanics
  • 6. Natural Honeycombs: Wood
  • Why does ice float in water? - George Zaidan and Charles Morton

Transcription

Constructions

There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,33,4}. Another form has two alternating 5-cube facets (like a checkerboard) with Schläfli symbol {4,3,3,31,1}. The lowest symmetry Wythoff construction has 32 types of facets around each vertex and a prismatic product Schläfli symbol {∞}(5).

Related polytopes and honeycombs

The [4,33,4], , Coxeter group generates 63 permutations of uniform tessellations, 35 with unique symmetry and 34 with unique geometry. The expanded 5-cubic honeycomb is geometrically identical to the 5-cubic honeycomb.

The 5-cubic honeycomb can be alternated into the 5-demicubic honeycomb, replacing the 5-cubes with 5-demicubes, and the alternated gaps are filled by 5-orthoplex facets.

It is also related to the regular 6-cube which exists in 6-space with three 5-cubes on each cell. This could be considered as a tessellation on the 5-sphere, an order-3 penteractic honeycomb, {4,34}.

The Penrose tilings are 2-dimensional aperiodic tilings that can be obtained as a projection of the 5-cubic honeycomb along a 5-fold rotational axis of symmetry. The vertices correspond to points in the 5-dimensional cubic lattice, and the tiles are formed by connecting points in a predefined manner.[1]

Tritruncated 5-cubic honeycomb

A tritruncated 5-cubic honeycomb, , contains all bitruncated 5-orthoplex facets and is the Voronoi tessellation of the D5* lattice. Facets can be identically colored from a doubled ×2, [[4,33,4]] symmetry, alternately colored from , [4,33,4] symmetry, three colors from , [4,3,3,31,1] symmetry, and 4 colors from , [31,1,3,31,1] symmetry.

See also

Regular and uniform honeycombs in 5-space:

References

  1. ^ de Bruijn, N. G. (1981). "Algebraic theory of Penrose's non-periodic tilings of the plane, I, II" (PDF). Indagationes Mathematicae. 43 (1): 39–66. doi:10.1016/1385-7258(81)90017-2.
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 31 March 2024, at 21:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.