To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quarter cubic honeycomb

From Wikipedia, the free encyclopedia

Quarter cubic honeycomb
 
Type Uniform honeycomb
Family Truncated simplectic honeycomb
Quarter hypercubic honeycomb
Indexing[1] J25,33, A13
W10, G6
Schläfli symbol t0,1{3[4]} or q{4,3,4}
Coxeter-Dynkin diagram = =
Cell types {3,3}

(3.6.6)
Face types {3}, {6}
Vertex figure

(isosceles triangular antiprism)
Space group Fd3m (227)
Coxeter group ×22, [[3[4]]]
Dual oblate cubille
Cell:

(1/4 of rhombic dodecahedron)
Properties vertex-transitive, edge-transitive

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

It is vertex-transitive with 6 truncated tetrahedra and 2 tetrahedra around each vertex.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is one of the 28 convex uniform honeycombs.

The faces of this honeycomb's cells form four families of parallel planes, each with a 3.6.3.6 tiling.

Its vertex figure is an isosceles antiprism: two equilateral triangles joined by six isosceles triangles.

John Horton Conway calls this honeycomb a truncated tetrahedrille, and its dual oblate cubille.

The vertices and edges represent a Kagome lattice in three dimensions,[2] which is the pyrochlore lattice.

YouTube Encyclopedic

  • 1/1
    Views:
    6 309
  • Triplanetary by E. E. "Doc" Smith

Transcription

Construction

The quarter cubic honeycomb can be constructed in slab layers of truncated tetrahedra and tetrahedral cells, seen as two trihexagonal tilings. Two tetrahedra are stacked by a vertex and a central inversion. In each trihexagonal tiling, half of the triangles belong to tetrahedra, and half belong to truncated tetrahedra. These slab layers must be stacked with tetrahedra triangles to truncated tetrahedral triangles to construct the uniform quarter cubic honeycomb. Slab layers of hexagonal prisms and triangular prisms can be alternated for elongated honeycombs, but these are also not uniform.


trihexagonal tiling:

Symmetry

Cells can be shown in two different symmetries. The reflection generated form represented by its Coxeter-Dynkin diagram has two colors of truncated cuboctahedra. The symmetry can be doubled by relating the pairs of ringed and unringed nodes of the Coxeter-Dynkin diagram, which can be shown with one colored tetrahedral and truncated tetrahedral cells.

Two uniform colorings
Symmetry , [3[4]] ×2, [[3[4]]]
Space group F43m (216) Fd3m (227)
Coloring
Vertex figure
Vertex
figure
symmetry
C3v
[3]
(*33)
order 6
D3d
[2+,6]
(2*3)
order 12

Related polyhedra


The subset of hexagonal faces of this honeycomb contains a regular skew apeirohedron {6,6|3}.

Four sets of parallel planes of trihexagonal tilings exist throughout this honeycomb.

This honeycomb is one of five distinct uniform honeycombs[3] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

A3 honeycombs
Space
group
Fibrifold Square
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
F43m
(216)
1o:2 a1
[3[4]] (None)
Fm3m
(225)
2:2 d2
<[3[4]]>
↔ [4,31,1]

×21
 1, 2
Fd3m
(227)
2+:2 g2
[[3[4]]]
or [2+[3[4]]]

×22  3
Pm3m
(221)
4:2 d4
<2[3[4]]>
↔ [4,3,4]

×41
 4
I3
(204)
8−o r8
[4[3[4]]]+
↔ [[4,3+,4]]

½×8
↔ ½×2
 (*)
Im3m
(229)
8o:2 [4[3[4]]]
↔ [[4,3,4]]
×8
×2
 5
C3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Pm3m
(221)
4:2 [4,3,4] ×1 1, 2, 3, 4,
5, 6
Fm3m
(225)
2:2 [1+,4,3,4]
↔ [4,31,1]

Half 7, 11, 12, 13
I43m
(217)
4o:2 [[(4,3,4,2+)]] Half × 2 (7),
Fd3m
(227)
2+:2 [[1+,4,3,4,1+]]
↔ [[3[4]]]

Quarter × 2 10,
Im3m
(229)
8o:2 [[4,3,4]] ×2

(1), 8, 9

The Quarter cubic honeycomb is related to a matrix of 3-dimensional honeycombs: q{2p,4,2q}

Euclidean/hyperbolic(paracompact/noncompact) quarter honeycombs q{p,3,q}
p \ q 4 6 8 ... ∞
4

q{4,3,4}
q{4,3,6}

q{4,3,8}

q{4,3,∞}
6 q{6,3,4}

q{6,3,6}
q{6,3,8}
q{6,3,∞}
8 q{8,3,4}
q{8,3,6}
q{8,3,8}
q{8,3,∞}
... q{∞,3,4}
q{∞,3,6}
q{∞,3,8}
q{∞,3,∞}

See also

References

  1. ^ For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. ^ "Physics Today article on the word kagome".
  3. ^ [1], OEIS sequence A000029 6-1 cases, skipping one with zero marks
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 14 August 2021, at 18:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.