To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quarter hypercubic honeycomb

From Wikipedia, the free encyclopedia

In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4} or Coxeter symbol qδ4 representing the regular form with three quarters of the vertices removed and containing the symmetry of Coxeter group for n ≥ 5, with = and for quarter n-cubic honeycombs = .[1]

n Name Schläfli
symbol
Coxeter diagrams Facets Vertex figure
3

quarter square tiling
q{4,4} or

or

h{4}={2} { }×{ }

{ }×{ }
4

quarter cubic honeycomb
q{4,3,4} or
or

h{4,3}

h2{4,3}

Elongated
triangular antiprism
5 quarter tesseractic honeycomb q{4,32,4} or
or

h{4,32}

h3{4,32}

{3,4}×{}
6 quarter 5-cubic honeycomb q{4,33,4}

h{4,33}

h4{4,33}

Rectified 5-cell antiprism
7 quarter 6-cubic honeycomb q{4,34,4}

h{4,34}

h5{4,34}
{3,3}×{3,3}
8 quarter 7-cubic honeycomb q{4,35,4}

h{4,35}

h6{4,35}
{3,3}×{3,31,1}
9 quarter 8-cubic honeycomb q{4,36,4}

h{4,36}

h<sub>7</sub>{4,3<sup>6</sup>}
{3,3}×{3,32,1}
{3,31,1}×{3,31,1}
 
n quarter n-cubic honeycomb q{4,3n-3,4} ... h{4,3n-2} hn-2{4,3n-2} ...

See also

References

  1. ^ Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
    1. pp. 122–123, 1973. (The lattice of hypercubes γn form the cubic honeycombs, δn+1)
    2. pp. 154–156: Partial truncation or alternation, represented by q prefix
    3. p. 296, Table II: Regular honeycombs, δn+1
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • Klitzing, Richard. "1D-8D Euclidean tesselations".
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 17 March 2023, at 14:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.